OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Abstract

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length. 

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel. 

RP-HPLC analysis has been used for the quantification of low molecular phenolic compounds for a long time, but it is not suitable for the quantification of tannins. A normal-phase (NP)-HPLC method using a ternary solvent system is suggested, which is able to separate the phenolic compounds from red wine into three major fractions. Comparison with standard phenolic compounds allowed the characterization and quantification of these fractions and the results were compared to those obtained by protein precipitation.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jan-Peter Hensen, Ingrid Weilack, Fabian Weber, Andreas Schieber, James Harbertson

University of Bonn Institute of Nutritional and Food Sciences, Molecular Food Technology Endenicher Allee 19b D-53115 Bonn Germany 

Contact the author

Keywords

Tannin analysis, Protein Precipitation Assay, NP-HPLC

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Exploring physiological diversity in Vitis genotypes: hydraulic traits in vines for oenological purposes and vines for table grapes

to maintain viticulture under global warming conditions, it is important to carefully select the appropriate genotypes for each vine-growing region and develop cultivars that are drought resistant. this ability is highly dependent on hydraulic traits, which are dynamic and vary according to the vine’s developmental stage and climatic conditions. this framework steadily enhances our understanding of the differences in drought resistance among vitis genotypes. however, there is still a need to comprehensively grasp the intra-specific variability, particularly between oenological and table grape cultivars.

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

Using Landsat LST data to predict vineyard productivity anomalies: A case study in the Euganean Hills wine region, Italy

In the current scenario of climatic variability, even though the vine (Vitis vinifera) is a species generally considered very fertile, the process of bud differentiation is particularly influenced by the weather trend not only of the current year but also of the previous one.

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.