OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Abstract

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Forty five samples of commercial gum Arabic were collected on the Italian market of enological products and their botanical origin (Acacia seyal, N=30; Acacia senegal, N=15) were established by applying the reference method recommended by the International Organisation of Vine and Wine [1], based on the total nitrogen content and the rotatory power. After a dilution to obtain 5 % of dry matter aqueous solutions, FT-IR spectra of samples were acquired in the 926–5011 cm-1 range with a resolution of 3.8 cm-1, and a statistical approach was applied on the FT-IR spectra to verify the ability to distinguish gums Arabic from the two botanical origins. Standard Discriminant Analysis correctly classified all the samples, providing an optimal distinction between the 2 botanical origins on root 1. The robustness of the model was verified using an external validation. For this aim the entire dataset was divided into a ‘training’ dataset, 80 % of samples for the 2 categories, and a ‘validation’ dataset, the remaining 20 %. The model was built using the training dataset and then the validation samples were classified on it and this process was repeated 3 times. In all cases, 100 % of correct classification was obtained.

references:

[1] OIV-OENO 27-2000, Gum Arabic, COEI-1-GOMARA: 2000.
[2] Lopez-Torrez, L.; Nigen, M.; Williams, P.; Doco, T.; Sanchez, C., Food Hydrocolloids, 2015, 51, 41-53.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mario Malacarne, Laura Barp, Daniela Bertoldi, Tiziana Nardin, Roberto Larcher

Technology Transfer Center, Edmund Mach Foundation Via E.Mach, 1, San Michele all’Adige, Italy 

Contact the author

Keywords

gum arabic, FT-IR, botanical origin, authenticity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines

Zoning of potential landscape and environment potential of the «Appellation d’Origine Contrôlée Costières de Nîmes»

The Union defence of the “appellation Costières de Nîmes” hired a reflection on the future of its territory production in the interests of preservation and enhancement.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Carbon footprint as a function of inter-annual climate variability in Uruguayan viticulture production systems

Climate change, driven by greenhouse gas (GHG) emissions, is one of humanity’s most significant environmental challenges.