OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Abstract

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Forty five samples of commercial gum Arabic were collected on the Italian market of enological products and their botanical origin (Acacia seyal, N=30; Acacia senegal, N=15) were established by applying the reference method recommended by the International Organisation of Vine and Wine [1], based on the total nitrogen content and the rotatory power. After a dilution to obtain 5 % of dry matter aqueous solutions, FT-IR spectra of samples were acquired in the 926–5011 cm-1 range with a resolution of 3.8 cm-1, and a statistical approach was applied on the FT-IR spectra to verify the ability to distinguish gums Arabic from the two botanical origins. Standard Discriminant Analysis correctly classified all the samples, providing an optimal distinction between the 2 botanical origins on root 1. The robustness of the model was verified using an external validation. For this aim the entire dataset was divided into a ‘training’ dataset, 80 % of samples for the 2 categories, and a ‘validation’ dataset, the remaining 20 %. The model was built using the training dataset and then the validation samples were classified on it and this process was repeated 3 times. In all cases, 100 % of correct classification was obtained.

references:

[1] OIV-OENO 27-2000, Gum Arabic, COEI-1-GOMARA: 2000.
[2] Lopez-Torrez, L.; Nigen, M.; Williams, P.; Doco, T.; Sanchez, C., Food Hydrocolloids, 2015, 51, 41-53.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mario Malacarne, Laura Barp, Daniela Bertoldi, Tiziana Nardin, Roberto Larcher

Technology Transfer Center, Edmund Mach Foundation Via E.Mach, 1, San Michele all’Adige, Italy 

Contact the author

Keywords

gum arabic, FT-IR, botanical origin, authenticity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Can wine competition awarded points be correlated with wine chromatic and aromatic composition?

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are complexity, balance, color and intensity. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste. Phenolic compounds are the main responsible for wine color, being anthocyanin and tannins the most determinant compounds in red wines. In addition to color, wine aroma is another important attribute linked with quality and consumer preferences.

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).