OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Abstract

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Forty five samples of commercial gum Arabic were collected on the Italian market of enological products and their botanical origin (Acacia seyal, N=30; Acacia senegal, N=15) were established by applying the reference method recommended by the International Organisation of Vine and Wine [1], based on the total nitrogen content and the rotatory power. After a dilution to obtain 5 % of dry matter aqueous solutions, FT-IR spectra of samples were acquired in the 926–5011 cm-1 range with a resolution of 3.8 cm-1, and a statistical approach was applied on the FT-IR spectra to verify the ability to distinguish gums Arabic from the two botanical origins. Standard Discriminant Analysis correctly classified all the samples, providing an optimal distinction between the 2 botanical origins on root 1. The robustness of the model was verified using an external validation. For this aim the entire dataset was divided into a ‘training’ dataset, 80 % of samples for the 2 categories, and a ‘validation’ dataset, the remaining 20 %. The model was built using the training dataset and then the validation samples were classified on it and this process was repeated 3 times. In all cases, 100 % of correct classification was obtained.

references:

[1] OIV-OENO 27-2000, Gum Arabic, COEI-1-GOMARA: 2000.
[2] Lopez-Torrez, L.; Nigen, M.; Williams, P.; Doco, T.; Sanchez, C., Food Hydrocolloids, 2015, 51, 41-53.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mario Malacarne, Laura Barp, Daniela Bertoldi, Tiziana Nardin, Roberto Larcher

Technology Transfer Center, Edmund Mach Foundation Via E.Mach, 1, San Michele all’Adige, Italy 

Contact the author

Keywords

gum arabic, FT-IR, botanical origin, authenticity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.