OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Abstract

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Forty five samples of commercial gum Arabic were collected on the Italian market of enological products and their botanical origin (Acacia seyal, N=30; Acacia senegal, N=15) were established by applying the reference method recommended by the International Organisation of Vine and Wine [1], based on the total nitrogen content and the rotatory power. After a dilution to obtain 5 % of dry matter aqueous solutions, FT-IR spectra of samples were acquired in the 926–5011 cm-1 range with a resolution of 3.8 cm-1, and a statistical approach was applied on the FT-IR spectra to verify the ability to distinguish gums Arabic from the two botanical origins. Standard Discriminant Analysis correctly classified all the samples, providing an optimal distinction between the 2 botanical origins on root 1. The robustness of the model was verified using an external validation. For this aim the entire dataset was divided into a ‘training’ dataset, 80 % of samples for the 2 categories, and a ‘validation’ dataset, the remaining 20 %. The model was built using the training dataset and then the validation samples were classified on it and this process was repeated 3 times. In all cases, 100 % of correct classification was obtained.

references:

[1] OIV-OENO 27-2000, Gum Arabic, COEI-1-GOMARA: 2000.
[2] Lopez-Torrez, L.; Nigen, M.; Williams, P.; Doco, T.; Sanchez, C., Food Hydrocolloids, 2015, 51, 41-53.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Mario Malacarne, Laura Barp, Daniela Bertoldi, Tiziana Nardin, Roberto Larcher

Technology Transfer Center, Edmund Mach Foundation Via E.Mach, 1, San Michele all’Adige, Italy 

Contact the author

Keywords

gum arabic, FT-IR, botanical origin, authenticity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The impact of ethyl esters, monoterpenes and volatile thiols to the perception of tropical fruit aromas in white wines

Many varietal white wines have aroma qualities that incorporate various tropical fruit aromas. These tropical fruit aromas are found to be considered positive qualities of the wines with consumers having positive emotional responses [1].

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.