terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Abstract

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones. By aligning Illumina and Nanopore whole-genome sequencing reads to a diploid genome assembly of Tempranillo, we identified genome structural variations (SV) specific of this clone: translocation events involving chromosomes 1-3, 7-11, and 8-17. The presence of the SV breakpoints was validated using PCR and Sanger sequencing. The analysis of self-cross progeny of the mutant clone showed that low pollen viability and reduced number of seeds per berry co-segregate with the SV event between specific haplotypes of chromosomes 1 and 3, suggesting a causal effect for this rearrangement. Inspection of Nanopore read alignments identified that the SV 1-3 event corresponds to a complex reciprocal translocation with duplications at the breakpoints of the two involved chromosomes. Considering that heterozygous reciprocal translocations associate with partially incompatible chromosome pairing during meiosis, we propose that this type of SV decreases fruit set rate by lowering gamete viability, ultimately reducing bunch compactness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Pablo Carbonell-Bejerano1*, Noelia Alañón1, Yolanda Ferradás1,2, Nuria Mauri1,3, José Miguel Martínez-Zapater1, Javier Ibáñez1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

bunch compactness, clonal variation, genome structural variation, pollen viability, reciprocal translocation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Genome editing applications on grapevine cv. Aglianico for the knockout of susceptibility genes related to fungal diseases

Context and purpose of the study. Italy hosts diverse grapevine varieties crucial for viticultural biodiversity. Preserving this biodiversity is essential for maintaining a diversified genetic pool and addressing future challenges such as climate change and emerging plant diseases.

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management.

Environmental protection by means of (“Great”) vitiviniculture zonation

In the paper is discussed the first example of environmental protection, agreed in a wide term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.