terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Abstract

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones. By aligning Illumina and Nanopore whole-genome sequencing reads to a diploid genome assembly of Tempranillo, we identified genome structural variations (SV) specific of this clone: translocation events involving chromosomes 1-3, 7-11, and 8-17. The presence of the SV breakpoints was validated using PCR and Sanger sequencing. The analysis of self-cross progeny of the mutant clone showed that low pollen viability and reduced number of seeds per berry co-segregate with the SV event between specific haplotypes of chromosomes 1 and 3, suggesting a causal effect for this rearrangement. Inspection of Nanopore read alignments identified that the SV 1-3 event corresponds to a complex reciprocal translocation with duplications at the breakpoints of the two involved chromosomes. Considering that heterozygous reciprocal translocations associate with partially incompatible chromosome pairing during meiosis, we propose that this type of SV decreases fruit set rate by lowering gamete viability, ultimately reducing bunch compactness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Pablo Carbonell-Bejerano1*, Noelia Alañón1, Yolanda Ferradás1,2, Nuria Mauri1,3, José Miguel Martínez-Zapater1, Javier Ibáñez1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

bunch compactness, clonal variation, genome structural variation, pollen viability, reciprocal translocation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Un exemple de valorisation d’une étude de terroir au sein d’une unité coopérative de production à Saint Hilaire d’Ozilhan (Gard) dans les cotes du Rhône

The winegrowers of the intercommunal cooperative cellar of Saint Hilaire d’Ozilhan have been practicing terroir selection for ten years. Five years ago, after having equipped themselves with an efficient commercial structure, and anxious to improve knowledge of their terroirs and to better control quantitatively and qualitatively the range of typicality that they can develop, they asked the Syndicate Général des Vignerons Réunis des Côtes du Rhône and the Institut Coopératif du Vin to help them set up an approach to better judge the behavior of the Grenache and Syrah grape varieties in the different terroirs, then to enhance this work through the improving product quality.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

Sensitivity of vis‐nir spectral indices to detect nitrogen deficiency and canopy function in cv. Barbera (Vitis vinifera L.) Grapevines

Precision nutrient management in viticulture can be addressed on the basis of a spatial characterization of within‐vineyard vine

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

The ripening of grapevine berries encompasses complex morphological and physiological processes, especially at veraison. Berry shrivel (BS) is a ripening physiological disorder affecting grape berries with visible symptoms appearing short after veraison. The main symptoms of BS are a strong reduction in sugar accumulation, inhibited anthocyanin biosynthesis and high pH values. The most popular red grape cultivar in Austria “Blauer Zweigelt” (Vitis vinifera L.) is specifically prone to develop the BS ripening disorder and up to date a no specific cause or causes could be identified. Recently omics approaches have identified and characterized key processes during grapevine ripening. Among them a small subset of genes, called SWITCH, have been described as markers for the onset of the ripening process in fruits.