terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Abstract

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones. By aligning Illumina and Nanopore whole-genome sequencing reads to a diploid genome assembly of Tempranillo, we identified genome structural variations (SV) specific of this clone: translocation events involving chromosomes 1-3, 7-11, and 8-17. The presence of the SV breakpoints was validated using PCR and Sanger sequencing. The analysis of self-cross progeny of the mutant clone showed that low pollen viability and reduced number of seeds per berry co-segregate with the SV event between specific haplotypes of chromosomes 1 and 3, suggesting a causal effect for this rearrangement. Inspection of Nanopore read alignments identified that the SV 1-3 event corresponds to a complex reciprocal translocation with duplications at the breakpoints of the two involved chromosomes. Considering that heterozygous reciprocal translocations associate with partially incompatible chromosome pairing during meiosis, we propose that this type of SV decreases fruit set rate by lowering gamete viability, ultimately reducing bunch compactness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Pablo Carbonell-Bejerano1*, Noelia Alañón1, Yolanda Ferradás1,2, Nuria Mauri1,3, José Miguel Martínez-Zapater1, Javier Ibáñez1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

bunch compactness, clonal variation, genome structural variation, pollen viability, reciprocal translocation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).