terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Abstract

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage. Norisoprenoids can be formed by chemical or enzymatic degradation of carotenoids. In this work, we studied two contrasting clones from the same plot as an experimental strategy to minimize the environmental factor and focus on the genes of interest. We evaluated glycosidic precursors (SPE-GC-MS), carotenoids (HPLC-DAD) and gene expression (RNA-Seq) in the selected clones during four stages of grape ripening. Significant differences in carotenoid and norisoprenoid content were found throughout the ripening period. Comparisons between clones showed significant differences in carotenoid content but not in norisoprenoid content during this harvest. Many genes associated with carotenoid and norisoprenoid biosynthesis showed differential expression throughout the ripening period in each clone. However, no genes were differentially expressed between clones. We conclude that the differences between clones do not manifest themselves every year. This shows that climate plays a fundamental role in aroma biosynthesis in Tannat clones.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cecilia C. Da Silva1*, Nicolas Nieto2, Andres Coniberti3, Eduardo Boido2, Francisco Carrau2, Eduardo Dellacassa4, Laura Fariña2

1 PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
2 Área Enología y Biotecnología de Fermentaciones, CYTAL, Facultad de Química, Universidad de la República, Montevideo, Uruguay
3 Estación Experimental “Wilson Ferreira Aldunate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
4 Laboratorio de Biotecnología de Aromas, DQO, Facultad de Química, Universidad de la República, Montevideo, Uruguay

Contact the author*

Keywords

Carotenoid, Norisoprenoid, Tannat, GC-MS, RNA-Seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

Non-saccharomyces yeasts in the biocontrol of grape molds in vineyards to reduce the use of pesticides

The wide diffusion of organic cultivation of vineyards and the need to reduce the use of pesticides highlights the urgent need for alternative and sustainable methods of vine protection by pathogen molds.

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.