terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Abstract

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage. Norisoprenoids can be formed by chemical or enzymatic degradation of carotenoids. In this work, we studied two contrasting clones from the same plot as an experimental strategy to minimize the environmental factor and focus on the genes of interest. We evaluated glycosidic precursors (SPE-GC-MS), carotenoids (HPLC-DAD) and gene expression (RNA-Seq) in the selected clones during four stages of grape ripening. Significant differences in carotenoid and norisoprenoid content were found throughout the ripening period. Comparisons between clones showed significant differences in carotenoid content but not in norisoprenoid content during this harvest. Many genes associated with carotenoid and norisoprenoid biosynthesis showed differential expression throughout the ripening period in each clone. However, no genes were differentially expressed between clones. We conclude that the differences between clones do not manifest themselves every year. This shows that climate plays a fundamental role in aroma biosynthesis in Tannat clones.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cecilia C. Da Silva1*, Nicolas Nieto2, Andres Coniberti3, Eduardo Boido2, Francisco Carrau2, Eduardo Dellacassa4, Laura Fariña2

1 PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
2 Área Enología y Biotecnología de Fermentaciones, CYTAL, Facultad de Química, Universidad de la República, Montevideo, Uruguay
3 Estación Experimental “Wilson Ferreira Aldunate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
4 Laboratorio de Biotecnología de Aromas, DQO, Facultad de Química, Universidad de la República, Montevideo, Uruguay

Contact the author*

Keywords

Carotenoid, Norisoprenoid, Tannat, GC-MS, RNA-Seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.

Viticultural landscape: history of a challenging coexistence between grapevines and humans 

Vitis vinifera is the most grown grapevine species, which originated about 6 million years ago in the trans-caucasian area as the ancestral (wild) type v. Vinifera spp. Sylvestris. On the other hand, the human being (homo sapiens) is much younger since he originated about 300.000 years ago in north africa.