terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Abstract

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage. Norisoprenoids can be formed by chemical or enzymatic degradation of carotenoids. In this work, we studied two contrasting clones from the same plot as an experimental strategy to minimize the environmental factor and focus on the genes of interest. We evaluated glycosidic precursors (SPE-GC-MS), carotenoids (HPLC-DAD) and gene expression (RNA-Seq) in the selected clones during four stages of grape ripening. Significant differences in carotenoid and norisoprenoid content were found throughout the ripening period. Comparisons between clones showed significant differences in carotenoid content but not in norisoprenoid content during this harvest. Many genes associated with carotenoid and norisoprenoid biosynthesis showed differential expression throughout the ripening period in each clone. However, no genes were differentially expressed between clones. We conclude that the differences between clones do not manifest themselves every year. This shows that climate plays a fundamental role in aroma biosynthesis in Tannat clones.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cecilia C. Da Silva1*, Nicolas Nieto2, Andres Coniberti3, Eduardo Boido2, Francisco Carrau2, Eduardo Dellacassa4, Laura Fariña2

1 PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
2 Área Enología y Biotecnología de Fermentaciones, CYTAL, Facultad de Química, Universidad de la República, Montevideo, Uruguay
3 Estación Experimental “Wilson Ferreira Aldunate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
4 Laboratorio de Biotecnología de Aromas, DQO, Facultad de Química, Universidad de la República, Montevideo, Uruguay

Contact the author*

Keywords

Carotenoid, Norisoprenoid, Tannat, GC-MS, RNA-Seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Landscape qualities and keys for action

Parallèlement à la connaissance des aptitudes viticoles, le terroir témoigne d’une identité locale, d’une spécificité des conditions de productions et d’une originalité des lieux.

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.