OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

Abstract

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

The aim of this study was to investigate the application of MIR spectroscopy (from 4000 to 700 cm-1) combined with multivariate analysis to provide a rapid screening tool for discriminating among different red monovarietal Italian wine varieties.

A total of 110 monovarietal red wines vintage 2016 were collected directly from the companies across different regions of Italy, including the following eleven grape varieties: Sangiovese, Nebbiolo, Aglianico, Nerello Mascalese, Primitivo, Raboso, Cannonau, Teroldego, Sagrantino, Montepulciano and Corvina.

PCA showed five wavelengths that mainly contributed to the PC1, including much-closed peak at 1043 cm-1 that correspond to the C–O stretch absorption bands that are important regions for glycerol, whereas the ethanol peaks at about 1085 cm-1. The band at 877 cm-1 would be related to C-C stretching vibration of organic molecules, whereas the asymmetric stretching for C–O in aromatic –OH group of polyphenols within the spectral regions from 1050 to 1165 cm-1. In particular, the (1175) – 1100 – 1060 cm-1 vibrational bands are combination bands involving C–O stretching and O-H deformation of phenolic rings. The 1166-1168 cm-1 peaks are attributable to in-plane bending deformations of C-H and C–O groups of polyphenols, respectively, which polymerization may cause a slight peak shift due to the formation of H-bridges.

The best results were obtained with the SVM that achieved an overall correct classification up to 72.2 % for test set, and 44.4 % for the validation set of wines, respectively. The Sangiovese wines (n=19) were splitted in two sub-groups (Sang-Romagna n=12; Sang-Tuscany n=7) considering the indeterminacy of its origins, disputed between Romagna and Tuscany. Although the classification of three grape varieties was problematic (i.e. Nerello Mascalese, Raboso and Primitivo), the remaining wines were almost correctly assigned to their actual classes.

Conclusion:

In conclusion, MIR spectroscopy coupled with chemometrics represents an interesting approach for the classification of monovarietal red wines, which is important in quality control and authenticity monitoring.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Giuseppina Paola Parpinello, Andrea Versari, Arianna Ricci, Panagiotis Arapitsas, Andrea Curioni, Luigi Moio, Susanna Rio Segade, Maurizio Ugliano

Department of Agricultural and Food Sciences, University of Bologna, (Italy) 
Fondazione Edmund Mach, Research and Innovation Centre, Department of Food Quality and Nutrition, San Michele all’Adige, (Italy) 
Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, (Italy) 
Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, (Italy) 
Dipartimento di Scienze Agrarie, Forestali e Alimentari, Universitàdegli Studi di Torino, (Italy) 
Department of Biotechnology, University of Verona, (Italy) 

Contact the author

Keywords

authenticity, FTIR, tannins, red wine

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Estudio de la adaptación y del comportamiento productivo y enológico de variedades blancas foráneas en la zona vitícola del Penedés

Estudio comparativo del comportamiento de ocho variedades de viníferas blancas en el Penedés, injertadas sobre los portainjertos 41-B y 110-R.
Se describen los comportamientos

Drought stress shapes the fungal microbiome of grapevine leaves: insights from DNA metabarcoding

Drought stress is an increasingly prevalent environmental challenge with implications for grapevine physiology and productivity, as well as for the microbiomes associated with grapevine tissues.

Terroir aspects of harvest timing in a cool climate wine region: physiology, berry skin phenolic composition and wine quality

Preliminary experiment of harvest timing was carried out in Eger wine district, Hungary in 2009. In situ physiological responses, berry quality parameters and wine quality of the Kékfrankos grapevine were studied at two growing sites (Eger-K6lyuktet6 – non-stressed, flat vineyard, and Eger-Nagyeged hill – water stressed, steep slope vineyard).

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.