OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 CIEDE2000 colour difference value as a parameter for tracing the ageing process on wood aged spirits

CIEDE2000 colour difference value as a parameter for tracing the ageing process on wood aged spirits

Abstract

It is quite common nowadays to carry out analyses which allow to control the ageing of spirits that are aged in wood casks. Many control parameters have been previously studied, such as the concentration of different phenolic compounds or the Total Polyphenol Index, in order to better understand the ageing process of wood aged spirits. On the other hand, it is frequent to analyse as a physical parameter the colour of those spirit samples, by stating them as an array of three coordinates from various colour spaces as CIE L*a*b* or CIE L*C*H*. 

In year 2001, the International Commission of Illumination proposed and/or modified various mathematical formulas for measuring the colour difference between two different samples and named that parameter as CIEDE2000. This value allows to quantify, with a number within a range from 0 to 100, the visual difference between two colours and, at the same time, it stablishes some value ranges which give some information about how easy is by an observer to differentiate them by eye. 

Due to the ageing process in wood casks of alcoholic beverages produces changes on the intensity and on the hue of the colour, in the present work we proposed to study, by analysing the colour differences between various samples aged in different times, if the CIEDE2000 parameter could be used as a parameter on the tracing of the ageing process. 

To this end, kinetical analyses and statistical regressions were carried out over different wood-aged spirits samples, obtaining good R2 values in return, stating that colour difference values could be used as parameters to study and better comprehend the ageing process of beverages in wood casks.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Manuel Jesús Delgado González, María de Valme García Moreno, Dominico Antonio Guillén Sánchez, Yolanda Carmona Jiménez, Manuel María Sánchez Guillén, Carmelo García Barroso 

Departamento de Química Analítica, Facultad de Ciencias, Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.

Contact the author

Keywords

Colour, Spirit, Wood, Ageing 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

How to transform the odor of a white wine into a red wine? Color it red!

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines.

Risposte enologiche del Nero d’Avola su suoli a diverso grado di salinità

Vengono riportati i risultati enologici di uno studio condotto sul Nero d’Avola in un tipico ambiente viticolo siciliano, in cui insistono suoli che presentano un diverso grado di salinità.

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool.