OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Abstract

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies. 

The control of wine quality is performed by analytical methods such as infrared, NMR or HPLC. Nevertheless, the presence of water and ethanol interferes with the determination of the other wine molecules. In addition, the complexity of the wine matrix and the chemical similarity between its main compounds complicate the extraction of information obtained by these analytical methods. Consequently, the need to develop more sensitive, fast and automated procedures remains a real need for investors and stakeholders in this area. Our study aims to evaluate the ability of Raman spectroscopy to discriminate wines depending on their origin and grape variety based on their spectral fingerprints. Wines from 8 grapes varieties have been studied: Chardonnay (Bourgogne), Riesling (Alsace), Gewurztraminer (Romania), Muscadet (Val de Loire), Sauvignon blanc (Bordeaux), Muscat (Pays d’Oc) and a blend with Semillon (Bergerac). The results showed that white wine has a rich spectral signature (excitation at 532 nm) which reflected its molecular composition. The application of statistical tests (Kruskal-Wallis) made it possible to classify 6 different groups thus confirming that the spectra of the analyzed wines are different. Principal component analysis and discriminant analysis showed a perfect discrimination between the different wines. The validation of the database with another wine that is not part of the model (Sauvignon blanc, Val de Loire) showed a very good discrimination between the different wines. Nevertheless, confusion was observed between the two Sauvignon because the model could not differentiate them despite their different origins. 

Raman spectroscopy allows the rapid identification of the grape variety. Nevertheless, a large number of samples must be analyzed in order to evaluate the industrial viability of this technique (variability between years, batches) and validate the approach on a large panel of wine belonging to grape varieties and different geographical areas.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Chantal Maury, Ali Assaf, Gérald Thouand 

University of Nantes, UMR CNRS 6144 GEPEA, CBAC, 18 Bd Gaston Defferre, 85035-La Roche sur Yon, France 

Contact the author

Keywords

white wines, authenticity, Raman spectroscopy, chemometrics

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

A multidisciplinary approach to assess the impact of future drought scenarios on vineyard ecosystems

Drought events can strongly affect grapevine and berry physiology and subsequent wine quality, as widely demonstrated in controlled experiments.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Spiders in vineyards show varying effects of inter-row management and the surrounding landscape

In vineyards, management and the surrounding landscape can have different effects on spiders. In temperate regions management (organic vs. conventional) may have less strong effects than for other crops.

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).