OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Abstract

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies. 

The control of wine quality is performed by analytical methods such as infrared, NMR or HPLC. Nevertheless, the presence of water and ethanol interferes with the determination of the other wine molecules. In addition, the complexity of the wine matrix and the chemical similarity between its main compounds complicate the extraction of information obtained by these analytical methods. Consequently, the need to develop more sensitive, fast and automated procedures remains a real need for investors and stakeholders in this area. Our study aims to evaluate the ability of Raman spectroscopy to discriminate wines depending on their origin and grape variety based on their spectral fingerprints. Wines from 8 grapes varieties have been studied: Chardonnay (Bourgogne), Riesling (Alsace), Gewurztraminer (Romania), Muscadet (Val de Loire), Sauvignon blanc (Bordeaux), Muscat (Pays d’Oc) and a blend with Semillon (Bergerac). The results showed that white wine has a rich spectral signature (excitation at 532 nm) which reflected its molecular composition. The application of statistical tests (Kruskal-Wallis) made it possible to classify 6 different groups thus confirming that the spectra of the analyzed wines are different. Principal component analysis and discriminant analysis showed a perfect discrimination between the different wines. The validation of the database with another wine that is not part of the model (Sauvignon blanc, Val de Loire) showed a very good discrimination between the different wines. Nevertheless, confusion was observed between the two Sauvignon because the model could not differentiate them despite their different origins. 

Raman spectroscopy allows the rapid identification of the grape variety. Nevertheless, a large number of samples must be analyzed in order to evaluate the industrial viability of this technique (variability between years, batches) and validate the approach on a large panel of wine belonging to grape varieties and different geographical areas.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Chantal Maury, Ali Assaf, Gérald Thouand 

University of Nantes, UMR CNRS 6144 GEPEA, CBAC, 18 Bd Gaston Defferre, 85035-La Roche sur Yon, France 

Contact the author

Keywords

white wines, authenticity, Raman spectroscopy, chemometrics

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of pedoclimatical conditions on the precocity potential of vineyards in the canton of Geneva

Terroir studies are common nowadays but few have used precise pedoclimatic measures in order to evaluate the precocity potential. The objectives of this work were (i) to assess the effect of main terroir parameters (soil, climate and topography) influencing the phenological development of the vine, and (ii) to evaluate a geostatistic approach by using a high number of already existing plots (higher variability) to analyze the terroir parameters’ impact.

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors