OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Abstract

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies. 

The control of wine quality is performed by analytical methods such as infrared, NMR or HPLC. Nevertheless, the presence of water and ethanol interferes with the determination of the other wine molecules. In addition, the complexity of the wine matrix and the chemical similarity between its main compounds complicate the extraction of information obtained by these analytical methods. Consequently, the need to develop more sensitive, fast and automated procedures remains a real need for investors and stakeholders in this area. Our study aims to evaluate the ability of Raman spectroscopy to discriminate wines depending on their origin and grape variety based on their spectral fingerprints. Wines from 8 grapes varieties have been studied: Chardonnay (Bourgogne), Riesling (Alsace), Gewurztraminer (Romania), Muscadet (Val de Loire), Sauvignon blanc (Bordeaux), Muscat (Pays d’Oc) and a blend with Semillon (Bergerac). The results showed that white wine has a rich spectral signature (excitation at 532 nm) which reflected its molecular composition. The application of statistical tests (Kruskal-Wallis) made it possible to classify 6 different groups thus confirming that the spectra of the analyzed wines are different. Principal component analysis and discriminant analysis showed a perfect discrimination between the different wines. The validation of the database with another wine that is not part of the model (Sauvignon blanc, Val de Loire) showed a very good discrimination between the different wines. Nevertheless, confusion was observed between the two Sauvignon because the model could not differentiate them despite their different origins. 

Raman spectroscopy allows the rapid identification of the grape variety. Nevertheless, a large number of samples must be analyzed in order to evaluate the industrial viability of this technique (variability between years, batches) and validate the approach on a large panel of wine belonging to grape varieties and different geographical areas.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Chantal Maury, Ali Assaf, Gérald Thouand 

University of Nantes, UMR CNRS 6144 GEPEA, CBAC, 18 Bd Gaston Defferre, 85035-La Roche sur Yon, France 

Contact the author

Keywords

white wines, authenticity, Raman spectroscopy, chemometrics

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].