OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical tools using electromagnetic spectroscopy techniques (IR, fluorescence, Raman) 9 Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

Abstract

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies. 

The control of wine quality is performed by analytical methods such as infrared, NMR or HPLC. Nevertheless, the presence of water and ethanol interferes with the determination of the other wine molecules. In addition, the complexity of the wine matrix and the chemical similarity between its main compounds complicate the extraction of information obtained by these analytical methods. Consequently, the need to develop more sensitive, fast and automated procedures remains a real need for investors and stakeholders in this area. Our study aims to evaluate the ability of Raman spectroscopy to discriminate wines depending on their origin and grape variety based on their spectral fingerprints. Wines from 8 grapes varieties have been studied: Chardonnay (Bourgogne), Riesling (Alsace), Gewurztraminer (Romania), Muscadet (Val de Loire), Sauvignon blanc (Bordeaux), Muscat (Pays d’Oc) and a blend with Semillon (Bergerac). The results showed that white wine has a rich spectral signature (excitation at 532 nm) which reflected its molecular composition. The application of statistical tests (Kruskal-Wallis) made it possible to classify 6 different groups thus confirming that the spectra of the analyzed wines are different. Principal component analysis and discriminant analysis showed a perfect discrimination between the different wines. The validation of the database with another wine that is not part of the model (Sauvignon blanc, Val de Loire) showed a very good discrimination between the different wines. Nevertheless, confusion was observed between the two Sauvignon because the model could not differentiate them despite their different origins. 

Raman spectroscopy allows the rapid identification of the grape variety. Nevertheless, a large number of samples must be analyzed in order to evaluate the industrial viability of this technique (variability between years, batches) and validate the approach on a large panel of wine belonging to grape varieties and different geographical areas.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Chantal Maury, Ali Assaf, Gérald Thouand 

University of Nantes, UMR CNRS 6144 GEPEA, CBAC, 18 Bd Gaston Defferre, 85035-La Roche sur Yon, France 

Contact the author

Keywords

white wines, authenticity, Raman spectroscopy, chemometrics

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Application de l’Analyse du Cycle de Vie (ACV) à un domaine viticole

Since 1980, Château de l’Éclair has belonged to SICAREX Beaujolais and has been involved in experimentation for the Beaujolais vineyards. However, it is a commercial estate with profitability and quality constraints, which means that it has to meet the growing environmental expectations of consumers. Given the number of practices claimed to be environment-friendly, it is sometimes difficult to prioritize actions.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.