Macrowine 2021
IVES 9 IVES Conference Series 9 Novel contribution to the study of mouth-feel properties in wines

Novel contribution to the study of mouth-feel properties in wines


In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed. Six odorless wine fractions containing groups of compounds with different sensory and chemical properties were isolated. Eighteen fractions (6 fractions x 3 wines) were firstly classified in groups attending to their in-mouth similarities and groups were described (labelled sorting task) by a panel of experts. This task allowed identifying 14 fractions with different in-mouth properties. These odorless fractions were further submitted to a task of vocabulary generation (repertory grid). Terms generated in both sorting task and repertory grid were combined to form categories through a triangulation process. The final list of 23 terms (4 related to taste and 18 to mouth-feel) was employed for the sensory characterization of the 14 fractions by Rate-all-that-apply method with 30 wine experts. ANOVA analyses calculated on the 23 attributes showed significant effects for 20 of them, which confirmed the discrimination ability of the terms and sensory differences among fractions. Further PCA analysis followed by cluster analysis showed 5 groups of fractions with different in-mouth properties: cluster 1 (5 fractions) characterized with terms: sweet, watery, silky, fleshy, oily and greasy; cluster 2 (4 fractions): burning, hot and bitter; cluster 3 (3 fractions): dry, coarse and granular; cluster 4 (1 fraction): dusty and 5 (1 fraction) bitter, sour, puckering, persistent and sharp.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article


Purificación Fernández-Zurba*, Dominique Valentin, Jose Avizcuri, Maria Pilar Saenz-Navaja, Vicente Ferreira

*Universidad de La Rioja

Contact the author


IVES Conference Series | Macrowine | Macrowine 2016


Related articles…

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.