OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Development of a LC-FTMS method to quantify natural sweeteners in red wines

Development of a LC-FTMS method to quantify natural sweeteners in red wines

Abstract

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. 

Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex). 

The finest results were obtained upon using Hypersil Gold C18 and a gradient elution composed of 0.1 % formic acid in water and 0.1 % formic acid in acetonitrile. Satisfactory linearity with correlative coefficient (r2) higher than 0.995 was achieved for both compounds with recoveries higher than 89 %. Good sensitivity (LOD ≤ 7 μg L-1) and repeatability (RSD ≤ 3 %) were obtained. 

The developed method was applied to screen epi-DPA-G and astilbin in red wines coming from several vintages over one century. Both compounds have been detected in all wines, at concentrations varying from 1.4 to 14.7 mg L-1 for epi-DPA-G and from 0.5 to 32.2 mg L-1 for astilbin. These results demonstrate the reliability of the developed method to quantifiy epi-DPA-G and astilbin in wine and suggest their oenological interest. Moreover, the method was used to study the influence of various winemaking parameters on epi-DPA-G and astilbin concentrations. The results opened promising perspectives for a better monitoring of extraction during vatting.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Syntia Fayad, Blandine Cretin, Axel Marchal 

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

Orbitrap, method validation, wine, sweetness

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Carbon footprint as a function of inter-annual climate variability in Uruguayan viticulture production systems

Climate change, driven by greenhouse gas (GHG) emissions, is one of humanity’s most significant environmental challenges.

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.