OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Development of a LC-FTMS method to quantify natural sweeteners in red wines

Development of a LC-FTMS method to quantify natural sweeteners in red wines

Abstract

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. 

Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex). 

The finest results were obtained upon using Hypersil Gold C18 and a gradient elution composed of 0.1 % formic acid in water and 0.1 % formic acid in acetonitrile. Satisfactory linearity with correlative coefficient (r2) higher than 0.995 was achieved for both compounds with recoveries higher than 89 %. Good sensitivity (LOD ≤ 7 μg L-1) and repeatability (RSD ≤ 3 %) were obtained. 

The developed method was applied to screen epi-DPA-G and astilbin in red wines coming from several vintages over one century. Both compounds have been detected in all wines, at concentrations varying from 1.4 to 14.7 mg L-1 for epi-DPA-G and from 0.5 to 32.2 mg L-1 for astilbin. These results demonstrate the reliability of the developed method to quantifiy epi-DPA-G and astilbin in wine and suggest their oenological interest. Moreover, the method was used to study the influence of various winemaking parameters on epi-DPA-G and astilbin concentrations. The results opened promising perspectives for a better monitoring of extraction during vatting.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Syntia Fayad, Blandine Cretin, Axel Marchal 

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 

Contact the author

Keywords

Orbitrap, method validation, wine, sweetness

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

The objective of this study was to determine the influence of four soils with contrasting chemical and physical properties on vine growth parameters and wine chemistry in a Paso Robles, California Cabernet Sauvignon vineyard

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD.

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.