OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 The sensory profile of astringency: application on Sangiovese wines

The sensory profile of astringency: application on Sangiovese wines


One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines. Therefore, four experimental wines (SANG1, SANG2, SANG3, SANG4) made with 100 % Sangiovese grapes in different wineries of Tuscany were also used to evaluate the subqualities of Sangiovese wine. At 8th months post-harvest (8 mph) wines were mainly characterized by green (Cf=40-60 %), dry (35 %), and adhesive (35-55 %) terms, indicating that Sangiovese wine tannins were excessively astringent and acid (green), causing a drying and sticking sensation in mouth. In order to follow the evolution of the astringency profile of Sangiovese during time, wines have been evaluated at 14-16-20 mph. The SANG1 wine at 14 and 16 mph was characterized by hard tannins, which at 20 mph turned to corduroy and rich subqualities. The SANG2 wine at 14 and 16 mph was felt as satin and silk, while at 20 mph became rich, soft and mouthcoat. The SANG3 wine was silk, corduroy and persistent after 14-16 mph, and velvet and full-body after 20 mph. The SANG4 was velvet and grainy at 14th mph, rich and soft at 16th mph, and full-body, mouthcoat and persistent after 20 months. Finally, the astringency profile of Sangiovese wine has changed from an unripe astringency towards rich, full-body and mouthcoating sensations during aging. By means of the described sensory method, a detailed evaluation of the astringency profile of Sangiovese was made, and the evolution of the qualitative features of Sangiovese tannins during aging has been revealed for the first time.


Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article


Alessandra Rinaldi, Alliette Gonzalez, Luigi Moio

1. Universitàdegli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino 
2. Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France. 

Contact the author


astringency, subqualities, Sangiovese, aging


IVES Conference Series | OENO IVAS 2019


Related articles…

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality


The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.