Terroir 2016 banner
IVES 9 IVES Conference Series 9 1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

Abstract

Tropical wines have been produced in the São Francisco river Valley thirty years ago, in the Northeast of Brazil. The main grape cultivar used for red tropical wines is ‘Syrah’, but wines have presented fast evolution, if they were made in the first or second semester, due to the high values of pH in grapes and wines and high climate temperatures. In the region, vine can produce twice a year, because annual average temperature is 26.5°C, with high solar radiation and water from irrigation. Petit Verdot cultivar was used commercially in one winery until 2011, when this one stopped to produce fine wines (Vitis vinifera L.) to produce table wines (Vitis labrusca). This cultivar presents a high powerful to help tropical wines increasing their stability, due to the high acidity, low pH e high phenolic concentration in the grapes and red wines. NMR spectroscopy is a powerful tool allowing in a single analysis to find many analytical compounds in grapes and wines. PCA multivariate statistical analysis applied on NMR data allows to discriminate samples and to identify markers compounds from the variables evaluated.

The aim of this work was to evaluate Petit Verdot wines harvested in three different soils, the first one sandy, the second one gravelly cambisoil and the third one sandy-clayey argisoils, by using 1H NMR spectroscopy data. Vines were planted in 2002 in the winery on six hectars, conducted on traditional lyre, grafted onto 101-14 Mgt and irrigated by drip. Grapes were harvested in January 2014 and wines were elaborated by traditional red winemaking, then analyzed one month after bottling by 1H NMR spectroscopy. It was possible to determine alcohols, organic and amino acids, and phenolics in the Petit Verdot wines. Results showed a significantly difference in terms of metabolic compounds, of the wines evaluated from the three different soils. PCA was able to find markers from each soil type. Results are discussed according to the enological potential of each plot.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Giuliano Elias Pereira (1), Fernando Hallwass (2), Raphael Soares (3), Marcos Martins Masutti (4), Juliane Barreto de Oliveira (5)

(1) Enology Researcher, Brazilian Agricultural Research Corporation – Embrapa Grape & Wine/Tropical Semiarid, P.O. Box 23, Zip Code 56.302-970, Petrolina-PE, Brazil;
(2) Department of Chemistry, Federal University of Pernambuco, Av. Luiz Freire s/n, 50.740-540, Recife-PE, Brazil; 3IF Ipojuca, PE 60, km 14, Califórnia, Zip Code 55590-000, Ipojuca-PE, Brazil; 4IF Sertão Pernambucano, Zip Code 56.300-000, Petrolina-PE, Brazil.

Contact the author

Keywords

Vitis vinifera L.; grapes; tropical wines; 1H NMR spectroscopy; metabolic fingerprint; multivariate statistical analyses

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Vers des systèmes viticoles économes en pesticide. Étude du réseau DEPHY-Vigne

Dans le cadre de TerclimPro 2025, Esther Fouillet a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8318

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.