Terroir 2016 banner
IVES 9 IVES Conference Series 9 1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

1H NMR spectroscopy data to discriminate Petit verdot wines from three different soil types in the São Francisco valley, Brazil

Abstract

Tropical wines have been produced in the São Francisco river Valley thirty years ago, in the Northeast of Brazil. The main grape cultivar used for red tropical wines is ‘Syrah’, but wines have presented fast evolution, if they were made in the first or second semester, due to the high values of pH in grapes and wines and high climate temperatures. In the region, vine can produce twice a year, because annual average temperature is 26.5°C, with high solar radiation and water from irrigation. Petit Verdot cultivar was used commercially in one winery until 2011, when this one stopped to produce fine wines (Vitis vinifera L.) to produce table wines (Vitis labrusca). This cultivar presents a high powerful to help tropical wines increasing their stability, due to the high acidity, low pH e high phenolic concentration in the grapes and red wines. NMR spectroscopy is a powerful tool allowing in a single analysis to find many analytical compounds in grapes and wines. PCA multivariate statistical analysis applied on NMR data allows to discriminate samples and to identify markers compounds from the variables evaluated.

The aim of this work was to evaluate Petit Verdot wines harvested in three different soils, the first one sandy, the second one gravelly cambisoil and the third one sandy-clayey argisoils, by using 1H NMR spectroscopy data. Vines were planted in 2002 in the winery on six hectars, conducted on traditional lyre, grafted onto 101-14 Mgt and irrigated by drip. Grapes were harvested in January 2014 and wines were elaborated by traditional red winemaking, then analyzed one month after bottling by 1H NMR spectroscopy. It was possible to determine alcohols, organic and amino acids, and phenolics in the Petit Verdot wines. Results showed a significantly difference in terms of metabolic compounds, of the wines evaluated from the three different soils. PCA was able to find markers from each soil type. Results are discussed according to the enological potential of each plot.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Giuliano Elias Pereira (1), Fernando Hallwass (2), Raphael Soares (3), Marcos Martins Masutti (4), Juliane Barreto de Oliveira (5)

(1) Enology Researcher, Brazilian Agricultural Research Corporation – Embrapa Grape & Wine/Tropical Semiarid, P.O. Box 23, Zip Code 56.302-970, Petrolina-PE, Brazil;
(2) Department of Chemistry, Federal University of Pernambuco, Av. Luiz Freire s/n, 50.740-540, Recife-PE, Brazil; 3IF Ipojuca, PE 60, km 14, Califórnia, Zip Code 55590-000, Ipojuca-PE, Brazil; 4IF Sertão Pernambucano, Zip Code 56.300-000, Petrolina-PE, Brazil.

Contact the author

Keywords

Vitis vinifera L.; grapes; tropical wines; 1H NMR spectroscopy; metabolic fingerprint; multivariate statistical analyses

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about the impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]