Terroir 2016 banner
IVES 9 IVES Conference Series 9 Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Abstract

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture. Hence, the adaptation of plant management is important to reply to climate related changes on a seasonal or long-term scale. In particular, a change in precipitation and higher temperatures entails the risk negatively impacting on fruit quality. An experiment was conducted where different canopy management strategies were applied to Riesling grapevines (Vitis vinifera L. cv. Riesling) planted in Winkel (Rheingau, Germany). Leaf removal at different canopy positions using various methods (e.g. manual vs. mechanical defoliation practices) led to a reduced photosynthetic active leaf area. Through modifications of the leaf area to fruit weight ratio, the berry ripening can be altered. Leaf removal of the bunch zone impacts fruit parameter and most importantly fruit health. Four different defoliation practices within a VSP trellis system were compared to a non-defoliated control during three growing seasons in an organic treated site: mechanical defoliation above the canopy (MDC); manually defoliation prior to flowering (DpF); defoliation of the bunch zone past flowering: Bunch zone defoliation (BZD) either suction fan plucking (EB490® Binger Seilzug, Germany) and mechanical defoliation or pulsation jetting of compressed air (DmS) (Siegwald®, Germany). Non-destructive measurements using a polyphenolmeter (Multiplex®3, Force-A, Orsay, France) were performed on leaves and berries to estimate the nutrition and ripening stage.

The chlorophyll index showed the lowest values for BZD and highest for control leaves. Additionally, on-the-go measurements were established to determine leaf components achieving vineyard maps in response to nitrogen or chlorophyll index. Furthermore, the data can be used for zoning the vineyard and harvest based on such mapping. When the severity of Botrytis cinerea was compared to control all treatments showed lower disease pressure (BZD -5.3 %, DpF -3.0 % and DmS -2.3 % respectively). Yield differed between -16 % (MDC), -8% DpF, -1 % (DmS) and +1 % (BZD) compared to the control having the highest (1.4 g) and BZD the lowest (1.1 g) single berry weight with a lower bunch compactness in 2014. Defoliation treatments influence the number of cluster per vine, where the lowest were found for DpF plants, accompanied with the lowest yield per single vine. These results help understanding the canopy characteristics and offer an opportunity to adapt the vineyard management strategies to seasonal changes.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Susanne TITTMANN, Vanessa STOEBER, Manfred STOLL

Geisenheim University, Department of general and organic viticulture, Von – Lade – Str. 1 D-65366 Geisenheim

Contact the author

Keywords

defoliation, non-invasive determination of leaf components, Multiplex, Plasmopara viticola, Vitis vinifera

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Le pays du Brulhois

Depuis un an, nous essayons de mettre en place un projet de développement socio-économique et culturel d’une zone située essentiellement au sud de la Garonne et à cheval sur 3 départements (le Lot et Garonne, le Gers et le Tam et Garonne) et sur 2 régions (l’Aquitaine et Midi Pyrénées): le pays du Brulhois, “porte de la Gascogne”.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.