Terroir 2016 banner
IVES 9 IVES Conference Series 9 Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Abstract

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture. Hence, the adaptation of plant management is important to reply to climate related changes on a seasonal or long-term scale. In particular, a change in precipitation and higher temperatures entails the risk negatively impacting on fruit quality. An experiment was conducted where different canopy management strategies were applied to Riesling grapevines (Vitis vinifera L. cv. Riesling) planted in Winkel (Rheingau, Germany). Leaf removal at different canopy positions using various methods (e.g. manual vs. mechanical defoliation practices) led to a reduced photosynthetic active leaf area. Through modifications of the leaf area to fruit weight ratio, the berry ripening can be altered. Leaf removal of the bunch zone impacts fruit parameter and most importantly fruit health. Four different defoliation practices within a VSP trellis system were compared to a non-defoliated control during three growing seasons in an organic treated site: mechanical defoliation above the canopy (MDC); manually defoliation prior to flowering (DpF); defoliation of the bunch zone past flowering: Bunch zone defoliation (BZD) either suction fan plucking (EB490® Binger Seilzug, Germany) and mechanical defoliation or pulsation jetting of compressed air (DmS) (Siegwald®, Germany). Non-destructive measurements using a polyphenolmeter (Multiplex®3, Force-A, Orsay, France) were performed on leaves and berries to estimate the nutrition and ripening stage.

The chlorophyll index showed the lowest values for BZD and highest for control leaves. Additionally, on-the-go measurements were established to determine leaf components achieving vineyard maps in response to nitrogen or chlorophyll index. Furthermore, the data can be used for zoning the vineyard and harvest based on such mapping. When the severity of Botrytis cinerea was compared to control all treatments showed lower disease pressure (BZD -5.3 %, DpF -3.0 % and DmS -2.3 % respectively). Yield differed between -16 % (MDC), -8% DpF, -1 % (DmS) and +1 % (BZD) compared to the control having the highest (1.4 g) and BZD the lowest (1.1 g) single berry weight with a lower bunch compactness in 2014. Defoliation treatments influence the number of cluster per vine, where the lowest were found for DpF plants, accompanied with the lowest yield per single vine. These results help understanding the canopy characteristics and offer an opportunity to adapt the vineyard management strategies to seasonal changes.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Susanne TITTMANN, Vanessa STOEBER, Manfred STOLL

Geisenheim University, Department of general and organic viticulture, Von – Lade – Str. 1 D-65366 Geisenheim

Contact the author

Keywords

defoliation, non-invasive determination of leaf components, Multiplex, Plasmopara viticola, Vitis vinifera

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

In search of the taste of terroir – a challenge for sensory science

The definition of terroir has evolved throughout history, from something clearly negative in the XVIth-XVIIIth century to a complex multi-parametric construct with positive connotations but also with many scientific unknowns. Terroir has always been linked more or less explicitly to the sensory properties of the resulting products.

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Study of Malvasia di Candia Aromatica shelf-life: effect of time and temperature on aroma compounds through an HS-SPME GCxGC-Ms approach

Young white wines should be consumed within a short time after bottling to avoid loss of their fresh, fruity attributes. Shelf-life of white wines can be extended if they are stored under suitable conditions of time and temperature prior to consumption.

Evolution of the metabolic profile of grapes in a context of climate change

In the current context of global climate change, anticipating the evolution of the oenological potential of emblematic grape varieties of regions such as Burgundy and Champagne is a guarantee of the sustainability of a sector which has considerable economic weight. however, if various models of climate change cast doubt on the sustainability of these grape varieties in these regions, appellation decrees, as well as consumer expectations, do not allow or consider the use of alternative grape varieties. In addition, control/compensation methods such as irrigation are also not permitted.