Terroir 2016 banner
IVES 9 IVES Conference Series 9 Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Abstract

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture. Hence, the adaptation of plant management is important to reply to climate related changes on a seasonal or long-term scale. In particular, a change in precipitation and higher temperatures entails the risk negatively impacting on fruit quality. An experiment was conducted where different canopy management strategies were applied to Riesling grapevines (Vitis vinifera L. cv. Riesling) planted in Winkel (Rheingau, Germany). Leaf removal at different canopy positions using various methods (e.g. manual vs. mechanical defoliation practices) led to a reduced photosynthetic active leaf area. Through modifications of the leaf area to fruit weight ratio, the berry ripening can be altered. Leaf removal of the bunch zone impacts fruit parameter and most importantly fruit health. Four different defoliation practices within a VSP trellis system were compared to a non-defoliated control during three growing seasons in an organic treated site: mechanical defoliation above the canopy (MDC); manually defoliation prior to flowering (DpF); defoliation of the bunch zone past flowering: Bunch zone defoliation (BZD) either suction fan plucking (EB490® Binger Seilzug, Germany) and mechanical defoliation or pulsation jetting of compressed air (DmS) (Siegwald®, Germany). Non-destructive measurements using a polyphenolmeter (Multiplex®3, Force-A, Orsay, France) were performed on leaves and berries to estimate the nutrition and ripening stage.

The chlorophyll index showed the lowest values for BZD and highest for control leaves. Additionally, on-the-go measurements were established to determine leaf components achieving vineyard maps in response to nitrogen or chlorophyll index. Furthermore, the data can be used for zoning the vineyard and harvest based on such mapping. When the severity of Botrytis cinerea was compared to control all treatments showed lower disease pressure (BZD -5.3 %, DpF -3.0 % and DmS -2.3 % respectively). Yield differed between -16 % (MDC), -8% DpF, -1 % (DmS) and +1 % (BZD) compared to the control having the highest (1.4 g) and BZD the lowest (1.1 g) single berry weight with a lower bunch compactness in 2014. Defoliation treatments influence the number of cluster per vine, where the lowest were found for DpF plants, accompanied with the lowest yield per single vine. These results help understanding the canopy characteristics and offer an opportunity to adapt the vineyard management strategies to seasonal changes.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Susanne TITTMANN, Vanessa STOEBER, Manfred STOLL

Geisenheim University, Department of general and organic viticulture, Von – Lade – Str. 1 D-65366 Geisenheim

Contact the author

Keywords

defoliation, non-invasive determination of leaf components, Multiplex, Plasmopara viticola, Vitis vinifera

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effects of regulated deficit irrigation (RDI) on grape composition in Monastrell grapevines under semiarid conditions

The influence of two pre-veraison and post-veraison regulated deficit irrigation (RDI) strategies on yield and grape quality was analyzed during a two year period for mature grapevines (cv. Monastrell) in Southeastern of Spain

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Influence of the temperature of the prise de mousse on the effervescence and foam of Champagne and sparkling wines.

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass

Wine microbial diversity and cross-over applications: emerging results and future perspectives

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota.