Terroir 2016 banner
IVES 9 IVES Conference Series 9 Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Abstract

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture. Hence, the adaptation of plant management is important to reply to climate related changes on a seasonal or long-term scale. In particular, a change in precipitation and higher temperatures entails the risk negatively impacting on fruit quality. An experiment was conducted where different canopy management strategies were applied to Riesling grapevines (Vitis vinifera L. cv. Riesling) planted in Winkel (Rheingau, Germany). Leaf removal at different canopy positions using various methods (e.g. manual vs. mechanical defoliation practices) led to a reduced photosynthetic active leaf area. Through modifications of the leaf area to fruit weight ratio, the berry ripening can be altered. Leaf removal of the bunch zone impacts fruit parameter and most importantly fruit health. Four different defoliation practices within a VSP trellis system were compared to a non-defoliated control during three growing seasons in an organic treated site: mechanical defoliation above the canopy (MDC); manually defoliation prior to flowering (DpF); defoliation of the bunch zone past flowering: Bunch zone defoliation (BZD) either suction fan plucking (EB490® Binger Seilzug, Germany) and mechanical defoliation or pulsation jetting of compressed air (DmS) (Siegwald®, Germany). Non-destructive measurements using a polyphenolmeter (Multiplex®3, Force-A, Orsay, France) were performed on leaves and berries to estimate the nutrition and ripening stage.

The chlorophyll index showed the lowest values for BZD and highest for control leaves. Additionally, on-the-go measurements were established to determine leaf components achieving vineyard maps in response to nitrogen or chlorophyll index. Furthermore, the data can be used for zoning the vineyard and harvest based on such mapping. When the severity of Botrytis cinerea was compared to control all treatments showed lower disease pressure (BZD -5.3 %, DpF -3.0 % and DmS -2.3 % respectively). Yield differed between -16 % (MDC), -8% DpF, -1 % (DmS) and +1 % (BZD) compared to the control having the highest (1.4 g) and BZD the lowest (1.1 g) single berry weight with a lower bunch compactness in 2014. Defoliation treatments influence the number of cluster per vine, where the lowest were found for DpF plants, accompanied with the lowest yield per single vine. These results help understanding the canopy characteristics and offer an opportunity to adapt the vineyard management strategies to seasonal changes.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Susanne TITTMANN, Vanessa STOEBER, Manfred STOLL

Geisenheim University, Department of general and organic viticulture, Von – Lade – Str. 1 D-65366 Geisenheim

Contact the author

Keywords

defoliation, non-invasive determination of leaf components, Multiplex, Plasmopara viticola, Vitis vinifera

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Regionality in Australian Pinot Noir wines: A study using NMR and ICP-MS with commercial wines

Aim: Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This study aimed to investigate the use of ICP-MS and NMR to characterise a selection of Pinot noir wines.

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.