Terroir 2016 banner
IVES 9 IVES Conference Series 9 The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

Abstract

Aims: Agroscope investigated the efficiency of nitrogen fertilisation via foliar urea application at veraison with the aim of raising the yeast assimilable nitrogen (YAN) concentration in the musts. The observations were conducted over three vintages on two grapevine cultivars in several pedoclimatic conditions of the Leman wine region, Switzerland. Knowing that the YAN in the must plays a key role in wine quality, the aim of this study was finding the main parameters affecting the final YAN level in order to better control them.

Methods and results: Five plots of Doral (white grape, Chasselas x Chardonnay) and five plots of Gamaret (red grape, Gamay x Reichensteiner) were chosen over 80 km of vineyards. Pedologic profiles were realised. Vegetal materials, date of plantation and cultivation practices were kept constant for comparison purposes. Each plot was divided in two treatments of 60 vines each: a control treatment and a nitrogen fertilized treatment (20 kg N/ha as foliar urea applied at veraison). Phenological development, nitrogen status and grape maturation of vines were monitored. 50 kg of grapes from each treatment were harvested and then vinified separately using a standard protocol. YAN levels in musts were significantly enhanced by foliar-nitrogen fertilisation, but strong vintage, site and cultivar effects were pointed out: average YAN gain over 3 years was 69 ± 32 mg N/L in Doral must and 52 ± 27 mg N/L in Gamaret must. Some sites consistently presented higher gains (e.g. Doral at Villeneuve, +106 mg N/L). The bigger water holding capacity and the deeper effective root zone seemed to mainly enhance vine nitrogen status. No correlation could be established between initial leaf N content and the variation of YAN gain. YAN in must was the parameter that best explained the positive variations in wine sensory characteristics and, in the case of Doral only, was highly correlated to the overall appreciation of the wines (R2 = 0.70).

Significance and impact of the study: This work confirms that YAN level in must, in relation to climate and soil characteristics, contributes to the terroir effect on the wine quality. YAN concentration is clearly influenced by pedoclimatic conditions and cultivar. The impact of foliar-N supply is not always sufficient for a significant improvement of wine overall appreciation particularly for the cv. Gamaret. This observations may assist the development of sustainable practices to increase the YAN concentration in musts.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Thibaut VERDENAL (1), Vivian ZUFFEREY (1), Stéphane BURGOS (2), Johannes RÖSTI (1), Fabrice LORENZINI (3), Agnès DIENES-NAGY (3), Jorge SPANGENBERG (4), Katia GINDRO (1), Jean-Laurent SPRING (1) and Olivier VIRET (1)

(1) Institute for Plant Production Sciences, Agroscope, 1009 Pully, Switzerland
(2) Changins, 1260 Nyon, Switzerland
(3) Institute for Food Sciences, Agroscope, 1260 Nyon, Switzerland
(4) Institute of Earth Surface Dynamics, University of Lausanne, Switzerland

Contact the author

Keywords

terroir, yeast assimilable nitrogen YAN, leaf urea fertilisation, wine quality, terroir

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Terroir and precision viticulture: are they compatible?

The concept of terroir or sense of place is almost as old as the wine industry. It is generally used as an all-encompassing term to reflect the effects of the biophysical environment in which grapes and their resultant wines are produced on the character of those wines. Historically, terroir has generally been considered at the regional or property scale.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

AIM: Different factors affect the style and quality of wine and one of the most important are environmental factors of vineyard location.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.