Terroir 2016 banner
IVES 9 IVES Conference Series 9 The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

Abstract

Aims: Agroscope investigated the efficiency of nitrogen fertilisation via foliar urea application at veraison with the aim of raising the yeast assimilable nitrogen (YAN) concentration in the musts. The observations were conducted over three vintages on two grapevine cultivars in several pedoclimatic conditions of the Leman wine region, Switzerland. Knowing that the YAN in the must plays a key role in wine quality, the aim of this study was finding the main parameters affecting the final YAN level in order to better control them.

Methods and results: Five plots of Doral (white grape, Chasselas x Chardonnay) and five plots of Gamaret (red grape, Gamay x Reichensteiner) were chosen over 80 km of vineyards. Pedologic profiles were realised. Vegetal materials, date of plantation and cultivation practices were kept constant for comparison purposes. Each plot was divided in two treatments of 60 vines each: a control treatment and a nitrogen fertilized treatment (20 kg N/ha as foliar urea applied at veraison). Phenological development, nitrogen status and grape maturation of vines were monitored. 50 kg of grapes from each treatment were harvested and then vinified separately using a standard protocol. YAN levels in musts were significantly enhanced by foliar-nitrogen fertilisation, but strong vintage, site and cultivar effects were pointed out: average YAN gain over 3 years was 69 ± 32 mg N/L in Doral must and 52 ± 27 mg N/L in Gamaret must. Some sites consistently presented higher gains (e.g. Doral at Villeneuve, +106 mg N/L). The bigger water holding capacity and the deeper effective root zone seemed to mainly enhance vine nitrogen status. No correlation could be established between initial leaf N content and the variation of YAN gain. YAN in must was the parameter that best explained the positive variations in wine sensory characteristics and, in the case of Doral only, was highly correlated to the overall appreciation of the wines (R2 = 0.70).

Significance and impact of the study: This work confirms that YAN level in must, in relation to climate and soil characteristics, contributes to the terroir effect on the wine quality. YAN concentration is clearly influenced by pedoclimatic conditions and cultivar. The impact of foliar-N supply is not always sufficient for a significant improvement of wine overall appreciation particularly for the cv. Gamaret. This observations may assist the development of sustainable practices to increase the YAN concentration in musts.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Thibaut VERDENAL (1), Vivian ZUFFEREY (1), Stéphane BURGOS (2), Johannes RÖSTI (1), Fabrice LORENZINI (3), Agnès DIENES-NAGY (3), Jorge SPANGENBERG (4), Katia GINDRO (1), Jean-Laurent SPRING (1) and Olivier VIRET (1)

(1) Institute for Plant Production Sciences, Agroscope, 1009 Pully, Switzerland
(2) Changins, 1260 Nyon, Switzerland
(3) Institute for Food Sciences, Agroscope, 1260 Nyon, Switzerland
(4) Institute of Earth Surface Dynamics, University of Lausanne, Switzerland

Contact the author

Keywords

terroir, yeast assimilable nitrogen YAN, leaf urea fertilisation, wine quality, terroir

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of one-year cover crop and arbuscular mycorrhiza inocululation in the microbial soil community of a vineyard

The microbial composition of the soil is an important factor to consider in viticulture, since its influence on the “terroir” and on the organoleptic properties of the wine have been demonstrated. Different agronomic techniques have the potential to modify the composition and functionality of the soil microbial community. Maintaining green covers is known to increase soil microbial diversity. The direct application of inoculum of beneficial microorganisms to the soil has also been used to increase their abundance. However, the environmental conditions of each site seem to have a determining weight in the result of these practices. In this study, we compared the effect on the microbial community of a cover crop with legumes in autumn and the inoculation of grapevines with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseae in the previous spring. The study has been carried out in a vineyard in Binissalem, Mallorca, Spain. After applying the treatments, we will analyze the soil microbial communities using the data obtained from Illumina amplification of soil DNA from the 16S and ITS regions to analyze bacteria and fungi community, respectively. In addition, we will record the physicochemical characteristics of the soil at each sampling point. The result showed that agronomic management, in the short term, has less influence than soil characteristics on the composition of the soil microbiome. With these results, we can conclude that in a vineyard, agricultural techniques should focus on improving the characteristics of the soil to improve the biodiversity of the soil microbiota.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character.

Oenotannins addition in wine: can be the modulation of redox potential predictable?

The purpose of this research was to study the interaction between oenotannins and wine matrix in order to design a targeted oenotannins addition for modulating the redox status of wine. It is in fact known that oenotannins can regulate the redox potential of musts and wines since they are electroactive substances (1).