Terroir 2016 banner
IVES 9 IVES Conference Series 9 Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Abstract

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon. Documented additional benefits include improved water infiltration and storage in the soil;reduced soil erosion; improved water quality in agricultural watersheds; an increase in the number and biodiversity of soil organisms; the reduction of petrochemical inputs and elimination of substances that disrupt soil biota. Many winegrowers embracing these practices are doing so as a way to personally address climate change and to improve the resilience of their vineyards to water stress.

Many winegrowers committed to the concept of Sustainable Viticulture utilize management practices that are consistent with Regenerative Agriculture. To become certified, Organic and Biodynamic vineyard farming systems are required to use Regenerative Agricultural practices. These include the use cover crops, composts and naturally occurring minerals and processed animal and plant byproducts for fertilizers to create healthy rooting environments and plant nutrition for vines. Irrigation strategies (if irrigation is needed) promote vine balance and appropriate yields for optimum wine quality. Integrated pest management is used, with the goal of enhancing a diverse self-regulating population of insect and mitepredators and parasitoids to control vineyard arthropod pests. Disease management relies both on naturally occurring fungicides and cultural practicesto minimize disease incidence and severity. Weed control is done both with grazing animals and under the vine cultivation equipment. The immediate goal of these farming systems is to create wines that are of the highest quality and expressive of the terroir of the vineyard site. Creating habitat that supports biodiversity of pollinators, vertebrates and other beneficial organisms is also important for many vineyards, especially thosethat are farmed biodynamically. There may be additional benefits of creating unique wines that fit specific market niches, and a vineyard environment that is always safe from pesticide exposure to work and live in for the owner and the employees.

In this presentation, metrics for soil health; farming practices including disease and pest management; and vineyard design and organization are discussed for both organic and biodynamic winegrowing in the west coast of the United States and Canada (San Diego, California to the Okanagan Valley of British Columbia and points in between).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Glenn McGourty

UCCE-Mendocino County, 890 N. Bush Street, Ukiah, California, USA

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.  

Wine tannins: What place for grape seed?

Phenolic compounds are among the most important quality factors of wines. They contribute to the organoleptic characteristics of wine such as colour, astringency, and bitterness. Although tannins found in wine can come from microbial and oak sources, the main sources of polyphenols are skin and seed from grapes. Yet, the link between grape seed phenolic content and wine composition, or even the link between seed maturity stage and wine composition are poorly studied. This work describes and explains the seed tannins kinetics release in wine, but also the impact of seed maturity stage on seed tannins extractability.

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...