Terroir 2016 banner
IVES 9 IVES Conference Series 9 Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Abstract

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon. Documented additional benefits include improved water infiltration and storage in the soil;reduced soil erosion; improved water quality in agricultural watersheds; an increase in the number and biodiversity of soil organisms; the reduction of petrochemical inputs and elimination of substances that disrupt soil biota. Many winegrowers embracing these practices are doing so as a way to personally address climate change and to improve the resilience of their vineyards to water stress.

Many winegrowers committed to the concept of Sustainable Viticulture utilize management practices that are consistent with Regenerative Agriculture. To become certified, Organic and Biodynamic vineyard farming systems are required to use Regenerative Agricultural practices. These include the use cover crops, composts and naturally occurring minerals and processed animal and plant byproducts for fertilizers to create healthy rooting environments and plant nutrition for vines. Irrigation strategies (if irrigation is needed) promote vine balance and appropriate yields for optimum wine quality. Integrated pest management is used, with the goal of enhancing a diverse self-regulating population of insect and mitepredators and parasitoids to control vineyard arthropod pests. Disease management relies both on naturally occurring fungicides and cultural practicesto minimize disease incidence and severity. Weed control is done both with grazing animals and under the vine cultivation equipment. The immediate goal of these farming systems is to create wines that are of the highest quality and expressive of the terroir of the vineyard site. Creating habitat that supports biodiversity of pollinators, vertebrates and other beneficial organisms is also important for many vineyards, especially thosethat are farmed biodynamically. There may be additional benefits of creating unique wines that fit specific market niches, and a vineyard environment that is always safe from pesticide exposure to work and live in for the owner and the employees.

In this presentation, metrics for soil health; farming practices including disease and pest management; and vineyard design and organization are discussed for both organic and biodynamic winegrowing in the west coast of the United States and Canada (San Diego, California to the Okanagan Valley of British Columbia and points in between).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Glenn McGourty

UCCE-Mendocino County, 890 N. Bush Street, Ukiah, California, USA

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Different oxygen and sulphur dioxide concentrations in ‘Sauvignon blanc’ must: effect on the composition of the must and wine

The effects of different oxygen and sulphur dioxide additions to South African ‘Sauvignon blanc’ musts were investigated. Oxygen addition without SO2 protection led to lower levels of certain volatile thiols in the wines, with a corresponding decrease in certain phenols and glutathione concentrations.