Terroir 2016 banner
IVES 9 IVES Conference Series 9 Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Abstract

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon. Documented additional benefits include improved water infiltration and storage in the soil;reduced soil erosion; improved water quality in agricultural watersheds; an increase in the number and biodiversity of soil organisms; the reduction of petrochemical inputs and elimination of substances that disrupt soil biota. Many winegrowers embracing these practices are doing so as a way to personally address climate change and to improve the resilience of their vineyards to water stress.

Many winegrowers committed to the concept of Sustainable Viticulture utilize management practices that are consistent with Regenerative Agriculture. To become certified, Organic and Biodynamic vineyard farming systems are required to use Regenerative Agricultural practices. These include the use cover crops, composts and naturally occurring minerals and processed animal and plant byproducts for fertilizers to create healthy rooting environments and plant nutrition for vines. Irrigation strategies (if irrigation is needed) promote vine balance and appropriate yields for optimum wine quality. Integrated pest management is used, with the goal of enhancing a diverse self-regulating population of insect and mitepredators and parasitoids to control vineyard arthropod pests. Disease management relies both on naturally occurring fungicides and cultural practicesto minimize disease incidence and severity. Weed control is done both with grazing animals and under the vine cultivation equipment. The immediate goal of these farming systems is to create wines that are of the highest quality and expressive of the terroir of the vineyard site. Creating habitat that supports biodiversity of pollinators, vertebrates and other beneficial organisms is also important for many vineyards, especially thosethat are farmed biodynamically. There may be additional benefits of creating unique wines that fit specific market niches, and a vineyard environment that is always safe from pesticide exposure to work and live in for the owner and the employees.

In this presentation, metrics for soil health; farming practices including disease and pest management; and vineyard design and organization are discussed for both organic and biodynamic winegrowing in the west coast of the United States and Canada (San Diego, California to the Okanagan Valley of British Columbia and points in between).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Glenn McGourty

UCCE-Mendocino County, 890 N. Bush Street, Ukiah, California, USA

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Study on the impact of clone on the varietal aroma of Xinomavro

It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.

The vineyard landscape of the oasis norte of Mendoza Argentina. Economic assessment of the recreational use through contingent valuation method

Oasis Norte’s vineyards of Mendoza Argentina have shaped along their existence, a characteristic landscape; this area is close to Mendoza City

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.