Terroir 2016 banner
IVES 9 IVES Conference Series 9 Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

Abstract

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon. Documented additional benefits include improved water infiltration and storage in the soil;reduced soil erosion; improved water quality in agricultural watersheds; an increase in the number and biodiversity of soil organisms; the reduction of petrochemical inputs and elimination of substances that disrupt soil biota. Many winegrowers embracing these practices are doing so as a way to personally address climate change and to improve the resilience of their vineyards to water stress.

Many winegrowers committed to the concept of Sustainable Viticulture utilize management practices that are consistent with Regenerative Agriculture. To become certified, Organic and Biodynamic vineyard farming systems are required to use Regenerative Agricultural practices. These include the use cover crops, composts and naturally occurring minerals and processed animal and plant byproducts for fertilizers to create healthy rooting environments and plant nutrition for vines. Irrigation strategies (if irrigation is needed) promote vine balance and appropriate yields for optimum wine quality. Integrated pest management is used, with the goal of enhancing a diverse self-regulating population of insect and mitepredators and parasitoids to control vineyard arthropod pests. Disease management relies both on naturally occurring fungicides and cultural practicesto minimize disease incidence and severity. Weed control is done both with grazing animals and under the vine cultivation equipment. The immediate goal of these farming systems is to create wines that are of the highest quality and expressive of the terroir of the vineyard site. Creating habitat that supports biodiversity of pollinators, vertebrates and other beneficial organisms is also important for many vineyards, especially thosethat are farmed biodynamically. There may be additional benefits of creating unique wines that fit specific market niches, and a vineyard environment that is always safe from pesticide exposure to work and live in for the owner and the employees.

In this presentation, metrics for soil health; farming practices including disease and pest management; and vineyard design and organization are discussed for both organic and biodynamic winegrowing in the west coast of the United States and Canada (San Diego, California to the Okanagan Valley of British Columbia and points in between).

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Glenn McGourty

UCCE-Mendocino County, 890 N. Bush Street, Ukiah, California, USA

Contact the author

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Protection juridique du terroir viticole en France

The diversity of potential sources of damage to the terroir of an appellation (physical, aesthetic, ecological damage, damage to the image, to collective representation or even, in a broad concept which will not be retained here, to the geographical name identifying the terroir) is accompanied by a fragmentation of the legal sources allowing its protection.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

Radiative and thermal effects on fruit ripening induced by differences in soil colour

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils.

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.