Terroir 2016 banner
IVES 9 IVES Conference Series 9 The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

Abstract

English version: Result of their history, some famous French wine countries such as Burgundy, Bordeaux or Alsace, have a hierarchical organization of their Appellations of Controlled Origin (AOC): AOC regional, communal, Premier Cru, Grand Cru. This organization is often called pyramidal organization. AOC wine regions with a more recent history, wanted to copy this organizational model to try to identify variations of their terroir and to make recognize them by INAO. AOC “Languedoc”, “Côtes de Provence”, “Touraine”, “Anjou”, “Muscadet Sevre et Maine”, but also “Côtes du Rhône”, are engaged in projects of pyramidal organization. This paper will present some projects undertaken, expectations and motivations of producers, the processing of applications by the INAO and the results of these projects. If the starting model is the same, we will see that every wine region progressing at its own pace, with the final different results.

French version: Résultat de leur histoire, certaines régions viticoles françaises comme la Bourgogne, le Bordelais ou l’Alsace, présentent aujourd’hui une organisation hiérarchisée de leurs AOC. AOC régionales, communales, premiers crus, grands crus, l’organisation est qualifiée de pyramidale. Cette organisation permet d’identifier à des échelles différentes les variations des éléments constitutifs d’un terroir. Des régions viticoles AOC avec une histoire plus récente, ont souhaité s’inspirer de ce modèle d’organisation pour essayer d’identifier et de faire reconnaitre par l’INAO les variations de leur terroir, en respectant la réglementation européenne sur les indications géographiques. Les AOC Languedoc, Côtes de Provence, Touraine, Anjou, Muscadet Sèvre et Maine, mais également Côtes du Rhône se sont lancées dans des projets de hiérarchisation. Cette communication présentera quelques démarches engagées, les attentes et motivations des producteurs, l’instruction des demandes par l’INAO et les résultats de ces démarches. Si le modèle de départ est le même, chaque région viticole progresse à son rythme, avec au final des résultats différents.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Gilles FLUTET

Institut National de l’Origine et de la qualité (INAO), la jasse de Maurin 34970 Lattes – FRANCE

Contact the author

Keywords

Geographical indication, Terroir, pyramidal organization, complementary geographical denominations, Appellations of Controlled Origin (AOC)

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Planting vineyards in cooler climates has been used over recent years as
a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Preliminary field studies of resistance of Georgian grapevine germplasm to powdery mildew (Erysiphe necator)

Erysiphe necator Schwein is a fungus that causes grapevine powdery mildew. It is one of the most problematic pathogens attacking Vitis vinifera L. The pathogen infects all green parts of the plant and reduces grape yield and quality. The suppression on mildew-susceptible cultivars requires intensive use of fungicides against pathogen, which has negative impact on the environment and human health.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).