Terroir 2016 banner
IVES 9 IVES Conference Series 9 The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

Abstract

English version: Result of their history, some famous French wine countries such as Burgundy, Bordeaux or Alsace, have a hierarchical organization of their Appellations of Controlled Origin (AOC): AOC regional, communal, Premier Cru, Grand Cru. This organization is often called pyramidal organization. AOC wine regions with a more recent history, wanted to copy this organizational model to try to identify variations of their terroir and to make recognize them by INAO. AOC “Languedoc”, “Côtes de Provence”, “Touraine”, “Anjou”, “Muscadet Sevre et Maine”, but also “Côtes du Rhône”, are engaged in projects of pyramidal organization. This paper will present some projects undertaken, expectations and motivations of producers, the processing of applications by the INAO and the results of these projects. If the starting model is the same, we will see that every wine region progressing at its own pace, with the final different results.

French version: Résultat de leur histoire, certaines régions viticoles françaises comme la Bourgogne, le Bordelais ou l’Alsace, présentent aujourd’hui une organisation hiérarchisée de leurs AOC. AOC régionales, communales, premiers crus, grands crus, l’organisation est qualifiée de pyramidale. Cette organisation permet d’identifier à des échelles différentes les variations des éléments constitutifs d’un terroir. Des régions viticoles AOC avec une histoire plus récente, ont souhaité s’inspirer de ce modèle d’organisation pour essayer d’identifier et de faire reconnaitre par l’INAO les variations de leur terroir, en respectant la réglementation européenne sur les indications géographiques. Les AOC Languedoc, Côtes de Provence, Touraine, Anjou, Muscadet Sèvre et Maine, mais également Côtes du Rhône se sont lancées dans des projets de hiérarchisation. Cette communication présentera quelques démarches engagées, les attentes et motivations des producteurs, l’instruction des demandes par l’INAO et les résultats de ces démarches. Si le modèle de départ est le même, chaque région viticole progresse à son rythme, avec au final des résultats différents.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Gilles FLUTET

Institut National de l’Origine et de la qualité (INAO), la jasse de Maurin 34970 Lattes – FRANCE

Contact the author

Keywords

Geographical indication, Terroir, pyramidal organization, complementary geographical denominations, Appellations of Controlled Origin (AOC)

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Characterization of vine vigor by ground based NDVI measurements

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

Effect of vigour and number of clusters on eonological parameters and metabolic profile of Cabernet Sauvignon red wines

Vegetative growth and yield are reported to affect grape and wine quality. They can be controlled through different techniques linked to vine management. The objective of this research was to determine the effect of vine vigour and number of clusters per vine on physicochemical composition and phenolic profile of red wines. The experiment was carried out during two vegetative cycles, with cv. Cabernet Sauvignon grafted onto Paulsen 1103. Three vine vigour were defined, according to shoot weight at previous harvests, being low, medium and high. Five treatments of number of clusters were used for each vigour, with 15, 22, 29, 36, and 45 clusters per vine. Grapes from all treatments were harvested in the same day from Brix and total acidity criteria. Thirty days after bottling, classical analyzes and phenolic compounds were performed. As results, different responses were obtained from each vintage. In 2020, a dry season from veraison to harvest, grapes and wines obtained from low vigour treatment and 45 clusters per vine was the highest in sugar and alcohol content respectively, while grapes and wines from high vigour and 15 clusters presented the lowest sugar and alcohol content. Total anthocyanins were higher in treatment with low vigour and 15 clusters, while the lowest amounts were found in low vigour with 45 clusters, as well as medium and high vigour with 36 clusters per vine. Total tannins were higher in high vigour with 22 clusters and medium vigour with 29 clusters, while were lower in low vigour with 36 clusters. In 2021, a wet season at harvest, responses were different, and great variations were observed between treatments. As conclusions, yield and vine vigour had strong influence on grape and wine quality, promoting different enological potentials on which can be indicated/used for aging strategies of red and even rosé wines.