Terroir 2016 banner
IVES 9 IVES Conference Series 9 The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

Abstract

English version: Result of their history, some famous French wine countries such as Burgundy, Bordeaux or Alsace, have a hierarchical organization of their Appellations of Controlled Origin (AOC): AOC regional, communal, Premier Cru, Grand Cru. This organization is often called pyramidal organization. AOC wine regions with a more recent history, wanted to copy this organizational model to try to identify variations of their terroir and to make recognize them by INAO. AOC “Languedoc”, “Côtes de Provence”, “Touraine”, “Anjou”, “Muscadet Sevre et Maine”, but also “Côtes du Rhône”, are engaged in projects of pyramidal organization. This paper will present some projects undertaken, expectations and motivations of producers, the processing of applications by the INAO and the results of these projects. If the starting model is the same, we will see that every wine region progressing at its own pace, with the final different results.

French version: Résultat de leur histoire, certaines régions viticoles françaises comme la Bourgogne, le Bordelais ou l’Alsace, présentent aujourd’hui une organisation hiérarchisée de leurs AOC. AOC régionales, communales, premiers crus, grands crus, l’organisation est qualifiée de pyramidale. Cette organisation permet d’identifier à des échelles différentes les variations des éléments constitutifs d’un terroir. Des régions viticoles AOC avec une histoire plus récente, ont souhaité s’inspirer de ce modèle d’organisation pour essayer d’identifier et de faire reconnaitre par l’INAO les variations de leur terroir, en respectant la réglementation européenne sur les indications géographiques. Les AOC Languedoc, Côtes de Provence, Touraine, Anjou, Muscadet Sèvre et Maine, mais également Côtes du Rhône se sont lancées dans des projets de hiérarchisation. Cette communication présentera quelques démarches engagées, les attentes et motivations des producteurs, l’instruction des demandes par l’INAO et les résultats de ces démarches. Si le modèle de départ est le même, chaque région viticole progresse à son rythme, avec au final des résultats différents.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Gilles FLUTET

Institut National de l’Origine et de la qualité (INAO), la jasse de Maurin 34970 Lattes – FRANCE

Contact the author

Keywords

Geographical indication, Terroir, pyramidal organization, complementary geographical denominations, Appellations of Controlled Origin (AOC)

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.