Terroir 2016 banner
IVES 9 IVES Conference Series 9 The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

Abstract

English version: Result of their history, some famous French wine countries such as Burgundy, Bordeaux or Alsace, have a hierarchical organization of their Appellations of Controlled Origin (AOC): AOC regional, communal, Premier Cru, Grand Cru. This organization is often called pyramidal organization. AOC wine regions with a more recent history, wanted to copy this organizational model to try to identify variations of their terroir and to make recognize them by INAO. AOC “Languedoc”, “Côtes de Provence”, “Touraine”, “Anjou”, “Muscadet Sevre et Maine”, but also “Côtes du Rhône”, are engaged in projects of pyramidal organization. This paper will present some projects undertaken, expectations and motivations of producers, the processing of applications by the INAO and the results of these projects. If the starting model is the same, we will see that every wine region progressing at its own pace, with the final different results.

French version: Résultat de leur histoire, certaines régions viticoles françaises comme la Bourgogne, le Bordelais ou l’Alsace, présentent aujourd’hui une organisation hiérarchisée de leurs AOC. AOC régionales, communales, premiers crus, grands crus, l’organisation est qualifiée de pyramidale. Cette organisation permet d’identifier à des échelles différentes les variations des éléments constitutifs d’un terroir. Des régions viticoles AOC avec une histoire plus récente, ont souhaité s’inspirer de ce modèle d’organisation pour essayer d’identifier et de faire reconnaitre par l’INAO les variations de leur terroir, en respectant la réglementation européenne sur les indications géographiques. Les AOC Languedoc, Côtes de Provence, Touraine, Anjou, Muscadet Sèvre et Maine, mais également Côtes du Rhône se sont lancées dans des projets de hiérarchisation. Cette communication présentera quelques démarches engagées, les attentes et motivations des producteurs, l’instruction des demandes par l’INAO et les résultats de ces démarches. Si le modèle de départ est le même, chaque région viticole progresse à son rythme, avec au final des résultats différents.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Gilles FLUTET

Institut National de l’Origine et de la qualité (INAO), la jasse de Maurin 34970 Lattes – FRANCE

Contact the author

Keywords

Geographical indication, Terroir, pyramidal organization, complementary geographical denominations, Appellations of Controlled Origin (AOC)

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA.

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.