Terroir 2016 banner
IVES 9 IVES Conference Series 9 Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture: recent advances and new opportunities

Abstract

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance. While valuable at the scale of precision viticulture, opportunities for spatial applications at the terroir scale are yet to be fully explored. The spatial scale of terroir analysis is different to precision viticulture and requires adaptation and new models of analysis.

With the rising availability of high spatial and temporal resolution datasets, increasing computing power and advances in image processing software, the opportunities for vineyard interrogation through spatial analysis are increasing. Remote sensing and image analysis techniques that are becoming more accessible include: object based image analysis, spatiotemporal analysis, hyperspectral analysis and topoclimatology. Each of these techniques has potential for development within a viticulture and terroir context. This paper investigates the use of these techniques in a spatial science framework at various scales and identifies potential opportunities for their application in a terroir context, particularly in terms of terroir zoning.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew HALL (1,2,3)

(1) National Wine & Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
(2) School of Environmental Sciences, Charles Sturt University, Albury, NSW 2640, Australia
(3) Institute for Land, Water & Society, Charles Sturt University, Albury, NSW 2640, Australia

Contact the author

Keywords

terroir zoning, remote sensing, phenology, OBIA, topoclimate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

ABA and ethephon alleviated to a different extent the impact of elevated temperatures on grape berry composition

The Intergovernmental Panel on Climate Change (IPCC) forecasts an increase in global temperature and a decrease in relative humidity (RH) in the coming decades, which may have implications for berry ripening and composition.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.

Sustainable agriculture and food innovation: preserving agrodiversity and advancing vineyard resilience in Madeira

The ISOPlexis – Center for Sustainable Agriculture and Food Technology, University of Madeira, is a research unit that develops activities in the fields of Sustainable Agriculture, Agri-food Technology and Bioeconomy, with focus on agrodiversity monitoring and phenotyping,