Terroir 2016 banner
IVES 9 IVES Conference Series 9 Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture: recent advances and new opportunities

Abstract

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance. While valuable at the scale of precision viticulture, opportunities for spatial applications at the terroir scale are yet to be fully explored. The spatial scale of terroir analysis is different to precision viticulture and requires adaptation and new models of analysis.

With the rising availability of high spatial and temporal resolution datasets, increasing computing power and advances in image processing software, the opportunities for vineyard interrogation through spatial analysis are increasing. Remote sensing and image analysis techniques that are becoming more accessible include: object based image analysis, spatiotemporal analysis, hyperspectral analysis and topoclimatology. Each of these techniques has potential for development within a viticulture and terroir context. This paper investigates the use of these techniques in a spatial science framework at various scales and identifies potential opportunities for their application in a terroir context, particularly in terms of terroir zoning.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew HALL (1,2,3)

(1) National Wine & Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
(2) School of Environmental Sciences, Charles Sturt University, Albury, NSW 2640, Australia
(3) Institute for Land, Water & Society, Charles Sturt University, Albury, NSW 2640, Australia

Contact the author

Keywords

terroir zoning, remote sensing, phenology, OBIA, topoclimate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

A few observations on double sigmoid fruit growth

Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,