Terroir 2016 banner
IVES 9 IVES Conference Series 9 Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture: recent advances and new opportunities

Abstract

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance. While valuable at the scale of precision viticulture, opportunities for spatial applications at the terroir scale are yet to be fully explored. The spatial scale of terroir analysis is different to precision viticulture and requires adaptation and new models of analysis.

With the rising availability of high spatial and temporal resolution datasets, increasing computing power and advances in image processing software, the opportunities for vineyard interrogation through spatial analysis are increasing. Remote sensing and image analysis techniques that are becoming more accessible include: object based image analysis, spatiotemporal analysis, hyperspectral analysis and topoclimatology. Each of these techniques has potential for development within a viticulture and terroir context. This paper investigates the use of these techniques in a spatial science framework at various scales and identifies potential opportunities for their application in a terroir context, particularly in terms of terroir zoning.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Andrew HALL (1,2,3)

(1) National Wine & Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
(2) School of Environmental Sciences, Charles Sturt University, Albury, NSW 2640, Australia
(3) Institute for Land, Water & Society, Charles Sturt University, Albury, NSW 2640, Australia

Contact the author

Keywords

terroir zoning, remote sensing, phenology, OBIA, topoclimate

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

Rapid quantification of higher alcohols in wine, port wine and brandy by HS-GC-FID

In response to the growing demand for rapid, precise, and efficient methods of quantifying volatile compounds in alcoholic beverages, this study presents a novel approach for the determination of higher alcohols in wine, port wine, and brandy.