Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Soil microbial and arthropod biodiversity under organic and biodynamic viticulture

Abstract

Aims: The aim of the study was to investigate whether organic or biodynamic management have a long-term impact on 1) the microbial biomass and enzymatic activity in the soil, 2) the soil microbial community, 3) flying as well as soil living arthropods and associated fungi.

Methods and Results: The studies presented here were conducted in a field trial comparing integrated, organic and biodynamic viticulture at least 10 years after the implementation of the different management systems. The vineyard is located in Geisenheim, Germany, and the study is conducted on Vitis vinifera L. cv. Riesling.

One study assessed soil enzymatic activities (GLU, CAT, UR, DHA, PHO) and microbial biomass by quantifying PLFAs and NLFAs, respectively. For the second study soil fungal and bacterial biodiversity were investigated using an amplicon sequencing approach. For the third study eDNA was extracted from arthropods in bulk and soil samples. A DNA metabarcoding approach was used to investigate whether diversity of arthropods and fungi in these samples was affected by the management system.

Fungal and bacterial biomass as well as enzymatic activities in the soil were shown to be highly affected by the management system. The organic and the biodynamic systems had significantly more fungal and bacterial biomass. In contrast, the integrated system had a significantly higher mycorrhizal biomass compared to the organic and the biodynamic system. Enzymatic activities measured were significantly higher under organic and biodynamic management.

Fungal species richness assessed by DNA sequencing did not differ among management systems, but fungal community composition was significantly affected. Bacterial species richness was significantly higher under organic and biodynamic management, whereas bacterial community composition was less affected by the management system.

Richness of flying and soil-living arthropods and their related fungi assessed by eDNA sequencing was not significantly affected by the management system alone. In contrast, management systems significantly differed in the arthropod community composition in bulk samples as well as in fungal community composition associated with flying as well as soil-living arthropods.

Conclusions:

Different management systems have a clear impact on soil microbial activity, biomass, and biodiversity, as well as on arthropod biodiversity and fungal biodiversity associated with arthropods. In the current studies soil enzymatic activities as well as soil microbial biomass and bacterial species richness in the soil were positively affected by organic and biodynamic management. Fungal community composition in the soil, in samples of soil-living as well as in samples of flying arthropods were highly affected by the management system. The hypothesis of whether arthropods in the vineyard act as vectors for bacteria and fungi will be discussed.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video

Authors

Johanna Döring1*, Matthias Friedel1, Jacob Agerbo Rasmussen3,4,5, Maximilian Hendgen2, Sofia Di Giacinto2, Randolf Kauer1

1Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
2Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
3Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
4Biological Institute, Genome Research and Molecular Biomedicine, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark 
5Center for Evolutionary Hologenomics, University of Copenhagen, Øster Farimagsgade  5A,  1352 Copenhagen, Denmark

Contact the author

Keywords

Organic, biodynamic, soil microbial activity, soil microbial biomass, microbial biodiversity, arthropod biodiversity

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.