Terroir 2016 banner
IVES 9 IVES Conference Series 9 Understanding and managing wine production from different terroirs

Understanding and managing wine production from different terroirs

Abstract

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration. Vine phenology and grape ripening is mainly driven by air temperature, but also by soil temperature. Soil provides water and minerals to the vine, in particular nitrogen. Over the past decades, tools have been developed to quantify terroir parameters. Small scale weather stations can yield temperature data at high resolution which can be used to provide refined maps of temperature summations. Models have been developed to predict phenology in relation to temperature. Vine water status can be assessed with a pressure chamber, or by means of carbon isotope discrimination measured on grape sugar (so-called δ13C). Vine nitrogen status can be assessed with the measurement of yeast available nitrogen (YAN). In this way, terroir parameters can not only be measured but also mapped. This approach allows precise vineyard management to optimize terroir expression, through plot selection, the choice of appropriate plant material in relation to soil and climate, vineyard floor management, fertilization and training system.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Cornelis VAN LEEUWEN, Jean-Philippe ROBY and Laure de RESSEGUIER

Bordeaux Sciences Agro, ISVV, UMR EGFV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

terroir, climate, soil, temperature, water status, nitrogen status, phenology, modeling, vineyard management, plant material

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters.

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.