Terroir 2016 banner
IVES 9 IVES Conference Series 9 Terroir factors causing sensory and chemical variation in Riesling wines

Terroir factors causing sensory and chemical variation in Riesling wines

Abstract

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments. Although geological diversity has been described for many vineyard sites, there is only scarce scientific knowledge about how the specific soil or climatic conditions translate into specific sensory differences.

To investigate the sensory impact of terroir, a range of 25 highly diverse vineyard sites were selected in Germany. Riesling grapes were harvested from those sites during five consecutive vintages, which were either processed following a standardised winemaking protocol or according to customary winemaking in the respective wine estate. Eight to ten months after harvest, a descriptive analysis by 20 trained judges characterised the wines by one colour, 14 odor and five taste attributes.

According to sensory analysis, wine originating from different vineyard sites yielded a considerable variation, although they were in close proximity. For example, throughout five vintages wines made from Riesling grapes grown on a loamy loess soil with basalt stones were much more intense in its citrus, peach, mango and honey melon attributes than the wines produced from light colored sandstone, which was described as more sour with vegetative and mineral notes. Applying discriminant analysis, it was possible to group the five bedrock types according to their sensory properties, and identify their typical aroma attributes.

Combining sensory and site specific data, PLS analysis was able to explain 48% of the sensory variation by a combined soil/climate data set with first two dimensions. The highest coefficients of determination were obtained for the explanation of sourness-related attributes (R2 0.82 – 0.94), which correlated with precipitation during the ripening period and the gravel content of the soil. The odour of honeydew melon was related to the sum of growing degree days, calcium and clay content of the soil plant available water.
Extracted flavor compounds of the wines were also analysed by GC-MS and used to group different terroirs. Furthermore, concentration of flavor compounds could be linked as well with soil and climate data using PLS-regression as well as to link them with sensory perception. 

Overall, this research could address specifically the impact of individual versus standardized winemaking, since wines were obtained from both sources, but from identical grape material. Throughout five vintages and 24 vineyard sites, customized winemaking was superior to distinguish the different terroirs to a greater extent than standardized winemaking.
Based on the analysis of up to 105 wine samples the impact of terroir could be demonstrated on a very robust data basis. Knowledge gained on how site-specific soil and climate parameters contribute to sensory differences in the wines will be an important contribution to communicating the concept of terroir to consumers.”

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Ulrich Fischer (1), Andrea Bauer (2), Stefan Koschinski (3), Sascha Wolz (1), Anette Schormann (1) and Hans-Georg Schmarr (1)

(1) Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt/Wstr. Germany.
(2) Department of Life Sciences, University of Applied Science, Hamburg, Germany
(3) Almsco/Markes International, Germany

Contact the author

Keywords

Terroir, wine, viticulture, Riesling, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Prototype development for the recovery of wine aromas from fermentation gases

Dealcoholised beverages are trendy. But this market segment is slowed down by flavour losses during dealcoholisation and by the reduced perception of flavours in the absence of alcohol.

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.