Terroir 2016 banner
IVES 9 IVES Conference Series 9 Terroir factors causing sensory and chemical variation in Riesling wines

Terroir factors causing sensory and chemical variation in Riesling wines

Abstract

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments. Although geological diversity has been described for many vineyard sites, there is only scarce scientific knowledge about how the specific soil or climatic conditions translate into specific sensory differences.

To investigate the sensory impact of terroir, a range of 25 highly diverse vineyard sites were selected in Germany. Riesling grapes were harvested from those sites during five consecutive vintages, which were either processed following a standardised winemaking protocol or according to customary winemaking in the respective wine estate. Eight to ten months after harvest, a descriptive analysis by 20 trained judges characterised the wines by one colour, 14 odor and five taste attributes.

According to sensory analysis, wine originating from different vineyard sites yielded a considerable variation, although they were in close proximity. For example, throughout five vintages wines made from Riesling grapes grown on a loamy loess soil with basalt stones were much more intense in its citrus, peach, mango and honey melon attributes than the wines produced from light colored sandstone, which was described as more sour with vegetative and mineral notes. Applying discriminant analysis, it was possible to group the five bedrock types according to their sensory properties, and identify their typical aroma attributes.

Combining sensory and site specific data, PLS analysis was able to explain 48% of the sensory variation by a combined soil/climate data set with first two dimensions. The highest coefficients of determination were obtained for the explanation of sourness-related attributes (R2 0.82 – 0.94), which correlated with precipitation during the ripening period and the gravel content of the soil. The odour of honeydew melon was related to the sum of growing degree days, calcium and clay content of the soil plant available water.
Extracted flavor compounds of the wines were also analysed by GC-MS and used to group different terroirs. Furthermore, concentration of flavor compounds could be linked as well with soil and climate data using PLS-regression as well as to link them with sensory perception. 

Overall, this research could address specifically the impact of individual versus standardized winemaking, since wines were obtained from both sources, but from identical grape material. Throughout five vintages and 24 vineyard sites, customized winemaking was superior to distinguish the different terroirs to a greater extent than standardized winemaking.
Based on the analysis of up to 105 wine samples the impact of terroir could be demonstrated on a very robust data basis. Knowledge gained on how site-specific soil and climate parameters contribute to sensory differences in the wines will be an important contribution to communicating the concept of terroir to consumers.”

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Ulrich Fischer (1), Andrea Bauer (2), Stefan Koschinski (3), Sascha Wolz (1), Anette Schormann (1) and Hans-Georg Schmarr (1)

(1) Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt/Wstr. Germany.
(2) Department of Life Sciences, University of Applied Science, Hamburg, Germany
(3) Almsco/Markes International, Germany

Contact the author

Keywords

Terroir, wine, viticulture, Riesling, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The importance of rural extension and advisory services to achieve a sustainable viticulture in a climate change scenario

A healthy and dynamic agricultural sector is an important foundation of rural development, generating strong bonds to other economic sectors.

Under-vine cover crops as a management tool for irrigated Mediterranean vineyards: agronomic implications and changes in soil physical and biological properties 

Cover crops are increasingly considered in Mediterranean climate vineyards due to a combination of agronomic and regulatory considerations. However, the soil under the vines themselves is typically kept free of vegetation by mechanical plowing or herbicide spraying. Taking into account that these practices may convey a number of non-favourable economic and environmental implications, and the fact that drip irrigation can ease the use of cover crops under the vines, the aim of this work was to evaluate the agronomic implications and the changes in soil physical and biological properties caused by an under-vine cover crop in a Mediterranean area.

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.