Terroir 2016 banner
IVES 9 IVES Conference Series 9 Sensory differences of Pinot noir wines from willamette valley subregions

Sensory differences of Pinot noir wines from willamette valley subregions

Abstract

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors. However it is unclear if wines from different areas (sub-regions) within an AVA also show distinctive sensory characteristics. There is the thought that these areas are geographical closer and many terroir factors are more similar. The sub-regions in the Willamette Valley have some distinct differences due to soil, climate and topography. Anecdotally it is thought that wines from these sub-regions were distinctive, but differences had not been defined. Commercially available Pinot noir wines from the 2012 & 2013 vintages were evaluated for aroma and mouthfeel.

Five to six wines from each of the regions were used; Chehalem mountains, Ribbon Ridge, McMinnville, Yamhill-Carlton, Eola-Amity Hills, Dundee Hills, Heart of the Willamette and overall Willamette Valley . Wines were chosen as follows; (1) 100% of the grapes were from that sub-region, (2) wines were identified as sub-regional on the label and (3) wines were considered good examples through preliminary discussions and tastings. Experienced tasters (Pinot noir winemakers from the Willamette Valley) participated in the sensory analysis. Citation of frequency method was used to identify those sensory descriptors most important for each wine.

Sensory results were analyzed using multidimensional scaling and correspondence analysis. Wines form the sub-regions were found to have sensory differences. Specifically some aromas that characterized the sub-regional wines included blackberry, vanilla, red jam, earthy, blueberry and fig. Mouthfeel differences were also found although descriptors used were conflicting, which may be due to some of the difficulties involved with mouthfeel characterization. The sub-regional differences from the 2 vintages varied, as the weather from 2012 and 2013 were quite different. While an overall definition of terroir differences have not yet been determined, it is quite clear from the wines in this study that sub-regional sensory differences do exist for Pinot noir in the Willamette Valley. This information is important as it helps define quality parameters for each area and can be utilized for marketing and tourism.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Elizabeth Tomasino

(1) Oregon Wine Research Institute, Food Science & Technology, Oregon State University, Oregon USA

Contact the author

Keywords

Terroir, wine, viticulture, Pinot Noir, Oregon, sensory analytics, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991).

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Shades of shading: chemical and sensory evaluation of riesling grown under various shading techniques

Sun exposure is needed for balanced grape ripening and sugar accumulation but is also one of the main drivers for a premature Riesling ageing

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

This study was performed on Chasselas wine to assess the impact of exposure to wine light according to several glass color of bottles. The aim was to highlight any differences whether from an organoleptic or analytical point of view depending on the color. For this, four different shades were compared, dead leaf, green, cinnamon and transparent. A control, not treated with light, was also included in the study…