Terroir 2016 banner
IVES 9 IVES Conference Series 9 Sensory differences of Pinot noir wines from willamette valley subregions

Sensory differences of Pinot noir wines from willamette valley subregions

Abstract

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors. However it is unclear if wines from different areas (sub-regions) within an AVA also show distinctive sensory characteristics. There is the thought that these areas are geographical closer and many terroir factors are more similar. The sub-regions in the Willamette Valley have some distinct differences due to soil, climate and topography. Anecdotally it is thought that wines from these sub-regions were distinctive, but differences had not been defined. Commercially available Pinot noir wines from the 2012 & 2013 vintages were evaluated for aroma and mouthfeel.

Five to six wines from each of the regions were used; Chehalem mountains, Ribbon Ridge, McMinnville, Yamhill-Carlton, Eola-Amity Hills, Dundee Hills, Heart of the Willamette and overall Willamette Valley . Wines were chosen as follows; (1) 100% of the grapes were from that sub-region, (2) wines were identified as sub-regional on the label and (3) wines were considered good examples through preliminary discussions and tastings. Experienced tasters (Pinot noir winemakers from the Willamette Valley) participated in the sensory analysis. Citation of frequency method was used to identify those sensory descriptors most important for each wine.

Sensory results were analyzed using multidimensional scaling and correspondence analysis. Wines form the sub-regions were found to have sensory differences. Specifically some aromas that characterized the sub-regional wines included blackberry, vanilla, red jam, earthy, blueberry and fig. Mouthfeel differences were also found although descriptors used were conflicting, which may be due to some of the difficulties involved with mouthfeel characterization. The sub-regional differences from the 2 vintages varied, as the weather from 2012 and 2013 were quite different. While an overall definition of terroir differences have not yet been determined, it is quite clear from the wines in this study that sub-regional sensory differences do exist for Pinot noir in the Willamette Valley. This information is important as it helps define quality parameters for each area and can be utilized for marketing and tourism.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Elizabeth Tomasino

(1) Oregon Wine Research Institute, Food Science & Technology, Oregon State University, Oregon USA

Contact the author

Keywords

Terroir, wine, viticulture, Pinot Noir, Oregon, sensory analytics, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

The microbial diversity during spontaneous grape must fermentation has a determinant influence on the chemical composition and sensory properties of wine. Therefore, yeast diversity is an important target to better understand wine regionality. Hence, the aim of this study was to isolate, identify, and characterize the yeast core microbiota in grape must during the early stage of lab-scale spontaneous fermentation of withered grapes to produce Amarone della Valpolicella wine (Verona, Italy).

Impact of soil characteristics on grape composition of Tempranillo variety under different weather conditions in Rioja DOCa (Spain)

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

New training methods to manage climatic and ecological transitions in perennial fruit crops

Context and purpose. Climate change and the demand for reducing inputs, including chemical compounds, present significant challenges for perennial fruit crops like grapes and apples.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].