Terroir 2016 banner
IVES 9 IVES Conference Series 9 Sensory differences of Pinot noir wines from willamette valley subregions

Sensory differences of Pinot noir wines from willamette valley subregions

Abstract

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors. However it is unclear if wines from different areas (sub-regions) within an AVA also show distinctive sensory characteristics. There is the thought that these areas are geographical closer and many terroir factors are more similar. The sub-regions in the Willamette Valley have some distinct differences due to soil, climate and topography. Anecdotally it is thought that wines from these sub-regions were distinctive, but differences had not been defined. Commercially available Pinot noir wines from the 2012 & 2013 vintages were evaluated for aroma and mouthfeel.

Five to six wines from each of the regions were used; Chehalem mountains, Ribbon Ridge, McMinnville, Yamhill-Carlton, Eola-Amity Hills, Dundee Hills, Heart of the Willamette and overall Willamette Valley . Wines were chosen as follows; (1) 100% of the grapes were from that sub-region, (2) wines were identified as sub-regional on the label and (3) wines were considered good examples through preliminary discussions and tastings. Experienced tasters (Pinot noir winemakers from the Willamette Valley) participated in the sensory analysis. Citation of frequency method was used to identify those sensory descriptors most important for each wine.

Sensory results were analyzed using multidimensional scaling and correspondence analysis. Wines form the sub-regions were found to have sensory differences. Specifically some aromas that characterized the sub-regional wines included blackberry, vanilla, red jam, earthy, blueberry and fig. Mouthfeel differences were also found although descriptors used were conflicting, which may be due to some of the difficulties involved with mouthfeel characterization. The sub-regional differences from the 2 vintages varied, as the weather from 2012 and 2013 were quite different. While an overall definition of terroir differences have not yet been determined, it is quite clear from the wines in this study that sub-regional sensory differences do exist for Pinot noir in the Willamette Valley. This information is important as it helps define quality parameters for each area and can be utilized for marketing and tourism.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Elizabeth Tomasino

(1) Oregon Wine Research Institute, Food Science & Technology, Oregon State University, Oregon USA

Contact the author

Keywords

Terroir, wine, viticulture, Pinot Noir, Oregon, sensory analytics, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Montpellier vine & wine sciences (M-WineS)

The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

Grapevine genotypes differ in xylem vessel occlusion after winter pruning 

Grapevines are continually wounded throughout their cultivation especially during winter pruning. Grapevines respond to wounding by occluding xylem vessels with gels or tyloses to limit pathogen attack and dehydration of the tissues. Although the production of xylem vessel occlusions has been studied in grapevine, to date we have no knowledge of whether different genotypes respond differently. The objective of this study was to characterize the genetic variation in xylem vessel occulsions in five different scion genotypes pruned at different dates.