Terroir 2016 banner
IVES 9 IVES Conference Series 9 Sensory differences of Pinot noir wines from willamette valley subregions

Sensory differences of Pinot noir wines from willamette valley subregions

Abstract

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors. However it is unclear if wines from different areas (sub-regions) within an AVA also show distinctive sensory characteristics. There is the thought that these areas are geographical closer and many terroir factors are more similar. The sub-regions in the Willamette Valley have some distinct differences due to soil, climate and topography. Anecdotally it is thought that wines from these sub-regions were distinctive, but differences had not been defined. Commercially available Pinot noir wines from the 2012 & 2013 vintages were evaluated for aroma and mouthfeel.

Five to six wines from each of the regions were used; Chehalem mountains, Ribbon Ridge, McMinnville, Yamhill-Carlton, Eola-Amity Hills, Dundee Hills, Heart of the Willamette and overall Willamette Valley . Wines were chosen as follows; (1) 100% of the grapes were from that sub-region, (2) wines were identified as sub-regional on the label and (3) wines were considered good examples through preliminary discussions and tastings. Experienced tasters (Pinot noir winemakers from the Willamette Valley) participated in the sensory analysis. Citation of frequency method was used to identify those sensory descriptors most important for each wine.

Sensory results were analyzed using multidimensional scaling and correspondence analysis. Wines form the sub-regions were found to have sensory differences. Specifically some aromas that characterized the sub-regional wines included blackberry, vanilla, red jam, earthy, blueberry and fig. Mouthfeel differences were also found although descriptors used were conflicting, which may be due to some of the difficulties involved with mouthfeel characterization. The sub-regional differences from the 2 vintages varied, as the weather from 2012 and 2013 were quite different. While an overall definition of terroir differences have not yet been determined, it is quite clear from the wines in this study that sub-regional sensory differences do exist for Pinot noir in the Willamette Valley. This information is important as it helps define quality parameters for each area and can be utilized for marketing and tourism.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Elizabeth Tomasino

(1) Oregon Wine Research Institute, Food Science & Technology, Oregon State University, Oregon USA

Contact the author

Keywords

Terroir, wine, viticulture, Pinot Noir, Oregon, sensory analytics, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Influenza di alcuni aspetti ambientali sul contenuto di stilbeni nel vino nell’area della DOC “Sangiovese di Romagna” (Italia)

The ambition of the zonation of the Doc “Sangiovese di Romagna” is described as 25 siti sperimentali, aventi diversa origine geologica, in cui è stato individuato un vigneto omogeneo per la determinazione dei principali parametri viticoli ed enologici. In seguito è stato analizzato il contentto di stilbeni nei vini al fine di indepth il legame con le charatteristiche geopedologiche. The studio describes the positive relationship between the altitude and the content of the trans -piceide nelle province di Forlì and Ravenna and of the trans -resveratrolo a Ravenna. I suoli con maggiore calcare attivo hanno fornito vini più ricchi in stilbeni.

Egg allergens in wine. Validation of a new automated method for ovalbumin quantification

Ovalbumin (ova), a natural clarifying protein, is particularly suitable for clarifying red wines. It helps improve the tannic and polyphenolic stability of the wine by removing the most astringent tannins and contributing to soften and refine the structure. Ova binds to suspended particles, proteins, polysaccharides, and, to a lesser extent, tannins through electrostatic and hydrophobic interactions, forming large complexes that can be removed from the wine through fining and/or filtration before bottling.