Terroir 2016 banner
IVES 9 IVES Conference Series 9 Sensory differences of Pinot noir wines from willamette valley subregions

Sensory differences of Pinot noir wines from willamette valley subregions

Abstract

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors. However it is unclear if wines from different areas (sub-regions) within an AVA also show distinctive sensory characteristics. There is the thought that these areas are geographical closer and many terroir factors are more similar. The sub-regions in the Willamette Valley have some distinct differences due to soil, climate and topography. Anecdotally it is thought that wines from these sub-regions were distinctive, but differences had not been defined. Commercially available Pinot noir wines from the 2012 & 2013 vintages were evaluated for aroma and mouthfeel.

Five to six wines from each of the regions were used; Chehalem mountains, Ribbon Ridge, McMinnville, Yamhill-Carlton, Eola-Amity Hills, Dundee Hills, Heart of the Willamette and overall Willamette Valley . Wines were chosen as follows; (1) 100% of the grapes were from that sub-region, (2) wines were identified as sub-regional on the label and (3) wines were considered good examples through preliminary discussions and tastings. Experienced tasters (Pinot noir winemakers from the Willamette Valley) participated in the sensory analysis. Citation of frequency method was used to identify those sensory descriptors most important for each wine.

Sensory results were analyzed using multidimensional scaling and correspondence analysis. Wines form the sub-regions were found to have sensory differences. Specifically some aromas that characterized the sub-regional wines included blackberry, vanilla, red jam, earthy, blueberry and fig. Mouthfeel differences were also found although descriptors used were conflicting, which may be due to some of the difficulties involved with mouthfeel characterization. The sub-regional differences from the 2 vintages varied, as the weather from 2012 and 2013 were quite different. While an overall definition of terroir differences have not yet been determined, it is quite clear from the wines in this study that sub-regional sensory differences do exist for Pinot noir in the Willamette Valley. This information is important as it helps define quality parameters for each area and can be utilized for marketing and tourism.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Elizabeth Tomasino

(1) Oregon Wine Research Institute, Food Science & Technology, Oregon State University, Oregon USA

Contact the author

Keywords

Terroir, wine, viticulture, Pinot Noir, Oregon, sensory analytics, aroma compounds

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Discrimination of monovarietal Italian red wines using derivative voltammetry

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Aptitude du cépage Chenin à l’élaboration de vins liquoreux en relation avec certaines unités terroirs de base de A.O.C. Coteaux du Layon

Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.

The Australian geographical indication process

The first white settlers arrived in Australia in 1788 and brought grape vine cuttings with them. As migration to Australia continued to grow during the XIX Century more and more vine cuttings, viticulturists and winemakers from Britain, France, Germany, ltaly, Switzerland and Yugoslavia founded their businesses.