Terroir 2016 banner
IVES 9 IVES Conference Series 9 Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Abstract

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide. Today Malbec is the most planted variety in Argentina, representing 17% of 226.400 ha, and stands for 54% of bottled exported wine in volume. Producers are afraid that the growth of this wine will be limited in the future if the consumers think of Malbec as one homogeneous product. The aim of this study is to determine if there are arguments to think that we can offer to the world different Malbec wines depending on the region in which they are produced.

Fanzone found differences on Malbec no volatile compounds (Fanzone et al., 2012) according to the origin of the grapes.

During the season 2015 Malbec wines were obtained using a standard protocol from grapes cultivated at  latitudes ranging from 23° to 39° south, average seasonal temperatures from 18,1°C to 21°C (Winkler-Amerine classification III to V), and elevations over sea level from 220 to 1850 meters. Grapes were picked with 24 to 24.5°Brix and elaborated in plastic bins. Corrections of SO2 and acidity, addition of yeasts and lactic-bacteria for malolactic fermentation were also standard. After natural clarification of lees, wines were bottled. Wines were characterized by a professional tasting panel (following ISO 8586 norms), aromatic compounds were measured by GCMS (Flash profile) and tiols were extracted (SPME) and measured (GCMS). Correlations between growing season average temperature (GST), flavors (measured by the tasting panel) and volatile chemical compounds were done.

As in previews studies (Jofré, V. 2011, Goldner et al., 2008), Malbec did not present a distinctive family of flavors. By contrast aromatic profile of wines results from the interaction of many families of volatile compounds. The concentration of some of them increased with GST (norisoprenoids R2=0,947, other decreased with GST (alcohols R2=0,873), while acids, terpenes, aldehydes, C6 compounds, esters did not present clear relation with GST. Molecules like 2-Phenyl ethanol (rose) and ethyl-isovalerate (apple) increases with decreasing GST (R2=0,976 and R=0,920 respectively). GST, Winkler and Huglin explained better the variations of volatile compounds than altitude, average minimum and maximum temperatures.
In the tasting Malbec’s fruity and flower flavors taken as a whole increased with decreasing GST (R2=0,79). There was a tendency on spices and wild herbs flavors to increase with GST (R2=0,69). Some differences of flavors could be related with the concentration of some compounds.
Finally Argentinian Malbec wines presented difference on taste and volatile compounds that can be explained by temperature (GST). This will permit in the future promote a pallet of Malbec wines, creating a more interesting category of wine.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Leonor DEIS (1) and Martin KAISER (2)

(1) Department of Plant Physiology,Facultad de Ciencias Agrarias, Luján de Cuyo, Mendoza,Argentina
(2) Department of Terroir Research, Doña Paula, Colón 531,Ciudad, Mendoza, Argentina

Contact the author

Keywords

terroir, Argentina, climate, aromatic compounds, aromatic profile, flavor, Malbec, wine, grapevine

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Exploring physiological diversity in Vitis genotypes: hydraulic traits in vines for oenological purposes and vines for table grapes

to maintain viticulture under global warming conditions, it is important to carefully select the appropriate genotypes for each vine-growing region and develop cultivars that are drought resistant. this ability is highly dependent on hydraulic traits, which are dynamic and vary according to the vine’s developmental stage and climatic conditions. this framework steadily enhances our understanding of the differences in drought resistance among vitis genotypes. however, there is still a need to comprehensively grasp the intra-specific variability, particularly between oenological and table grape cultivars.

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007)

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Uncovering the effectiveness of vineyard techniques used to delay ripening through meta-analysis

One of the most concerning trends associated with increasing heat and water stress is advanced ripening of grapes, which leads to harvesting fruit at higher sugar concentrations but lacking optimal phenolic (i.e. color and mouthfeel) and aromatic maturity. Mitigation techniques for this phenomenon have been studied for many years and practices to delay sugar accumulation have been identified, including antitranspirants, delayed pruning and late-source-limitation techniques. Evaluation of the efficacy of these vineyard practices has occurred across a wide range of environments, vintages, varieties and growing conditions. To assess the broader efficacy of these three vineyard practices, which are easy-to-implement and cost-effective, a meta-analytic approach was adopted using data retrieved from 43 original studies.