Terroir 2016 banner
IVES 9 IVES Conference Series 9 Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Abstract

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide. Today Malbec is the most planted variety in Argentina, representing 17% of 226.400 ha, and stands for 54% of bottled exported wine in volume. Producers are afraid that the growth of this wine will be limited in the future if the consumers think of Malbec as one homogeneous product. The aim of this study is to determine if there are arguments to think that we can offer to the world different Malbec wines depending on the region in which they are produced.

Fanzone found differences on Malbec no volatile compounds (Fanzone et al., 2012) according to the origin of the grapes.

During the season 2015 Malbec wines were obtained using a standard protocol from grapes cultivated at  latitudes ranging from 23° to 39° south, average seasonal temperatures from 18,1°C to 21°C (Winkler-Amerine classification III to V), and elevations over sea level from 220 to 1850 meters. Grapes were picked with 24 to 24.5°Brix and elaborated in plastic bins. Corrections of SO2 and acidity, addition of yeasts and lactic-bacteria for malolactic fermentation were also standard. After natural clarification of lees, wines were bottled. Wines were characterized by a professional tasting panel (following ISO 8586 norms), aromatic compounds were measured by GCMS (Flash profile) and tiols were extracted (SPME) and measured (GCMS). Correlations between growing season average temperature (GST), flavors (measured by the tasting panel) and volatile chemical compounds were done.

As in previews studies (Jofré, V. 2011, Goldner et al., 2008), Malbec did not present a distinctive family of flavors. By contrast aromatic profile of wines results from the interaction of many families of volatile compounds. The concentration of some of them increased with GST (norisoprenoids R2=0,947, other decreased with GST (alcohols R2=0,873), while acids, terpenes, aldehydes, C6 compounds, esters did not present clear relation with GST. Molecules like 2-Phenyl ethanol (rose) and ethyl-isovalerate (apple) increases with decreasing GST (R2=0,976 and R=0,920 respectively). GST, Winkler and Huglin explained better the variations of volatile compounds than altitude, average minimum and maximum temperatures.
In the tasting Malbec’s fruity and flower flavors taken as a whole increased with decreasing GST (R2=0,79). There was a tendency on spices and wild herbs flavors to increase with GST (R2=0,69). Some differences of flavors could be related with the concentration of some compounds.
Finally Argentinian Malbec wines presented difference on taste and volatile compounds that can be explained by temperature (GST). This will permit in the future promote a pallet of Malbec wines, creating a more interesting category of wine.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Leonor DEIS (1) and Martin KAISER (2)

(1) Department of Plant Physiology,Facultad de Ciencias Agrarias, Luján de Cuyo, Mendoza,Argentina
(2) Department of Terroir Research, Doña Paula, Colón 531,Ciudad, Mendoza, Argentina

Contact the author

Keywords

terroir, Argentina, climate, aromatic compounds, aromatic profile, flavor, Malbec, wine, grapevine

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially Age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.