Terroir 2016 banner
IVES 9 IVES Conference Series 9 Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Abstract

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide. Today Malbec is the most planted variety in Argentina, representing 17% of 226.400 ha, and stands for 54% of bottled exported wine in volume. Producers are afraid that the growth of this wine will be limited in the future if the consumers think of Malbec as one homogeneous product. The aim of this study is to determine if there are arguments to think that we can offer to the world different Malbec wines depending on the region in which they are produced.

Fanzone found differences on Malbec no volatile compounds (Fanzone et al., 2012) according to the origin of the grapes.

During the season 2015 Malbec wines were obtained using a standard protocol from grapes cultivated at  latitudes ranging from 23° to 39° south, average seasonal temperatures from 18,1°C to 21°C (Winkler-Amerine classification III to V), and elevations over sea level from 220 to 1850 meters. Grapes were picked with 24 to 24.5°Brix and elaborated in plastic bins. Corrections of SO2 and acidity, addition of yeasts and lactic-bacteria for malolactic fermentation were also standard. After natural clarification of lees, wines were bottled. Wines were characterized by a professional tasting panel (following ISO 8586 norms), aromatic compounds were measured by GCMS (Flash profile) and tiols were extracted (SPME) and measured (GCMS). Correlations between growing season average temperature (GST), flavors (measured by the tasting panel) and volatile chemical compounds were done.

As in previews studies (Jofré, V. 2011, Goldner et al., 2008), Malbec did not present a distinctive family of flavors. By contrast aromatic profile of wines results from the interaction of many families of volatile compounds. The concentration of some of them increased with GST (norisoprenoids R2=0,947, other decreased with GST (alcohols R2=0,873), while acids, terpenes, aldehydes, C6 compounds, esters did not present clear relation with GST. Molecules like 2-Phenyl ethanol (rose) and ethyl-isovalerate (apple) increases with decreasing GST (R2=0,976 and R=0,920 respectively). GST, Winkler and Huglin explained better the variations of volatile compounds than altitude, average minimum and maximum temperatures.
In the tasting Malbec’s fruity and flower flavors taken as a whole increased with decreasing GST (R2=0,79). There was a tendency on spices and wild herbs flavors to increase with GST (R2=0,69). Some differences of flavors could be related with the concentration of some compounds.
Finally Argentinian Malbec wines presented difference on taste and volatile compounds that can be explained by temperature (GST). This will permit in the future promote a pallet of Malbec wines, creating a more interesting category of wine.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Leonor DEIS (1) and Martin KAISER (2)

(1) Department of Plant Physiology,Facultad de Ciencias Agrarias, Luján de Cuyo, Mendoza,Argentina
(2) Department of Terroir Research, Doña Paula, Colón 531,Ciudad, Mendoza, Argentina

Contact the author

Keywords

terroir, Argentina, climate, aromatic compounds, aromatic profile, flavor, Malbec, wine, grapevine

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Increasing the capacity of change and adaptation of agri-food chain: the Agri-food CHIP project

The increasing vulnerability of food systems is a pressing challenge amplified by global interconnectedness.

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.)