Terroir 2016 banner
IVES 9 IVES Conference Series 9 How climate change can modify the flavor of red Merlot and Cabernet-Sauvignon

How climate change can modify the flavor of red Merlot and Cabernet-Sauvignon

Abstract

The main goal of this research was to identify key aroma compounds linked with the maturity of grapes (ripe and overripe) and involved in grapes and wines with an intense dried fruits aroma. Odoriferous zones reminiscent of these aromas were detected by gas chromatography coupled with olfactometry (GC-O). Three odoriferous zones were identified (OZ1, OZ2, OZ3). Using GC-MS with chemical standards, they were identified as (Z)-1,5-octadien-3-one (geranium), furaneol (caramel) and γ-nonalactone (coconut, cooked peach), respectively. Studies of their sensory properties and quantitative assays by GC-MS (EI/CI) in musts and wines were performed.

Furaneol and γ-nonalactone are well-known compounds in wines but have only rarely been reported in musts. On the contrary, the influence of (Z)-1,5-octadien-3-one on the aroma of must is reported for the first time. The perception threshold of this ketone in must is 1.2 ng/L and its concentration can exceed 200 ng/L in overripe merlot grapes. High concentrations of furaneol and γ-nonalactone were detected in musts and young red wines marked by dried fruit flavors. We also report the first results concerning the incidence of harvest date of Cabernet-Sauvignon grapes on the aromas and fine composition of musts and wines.

DOI:

Publication date: June 24, 2020

Issue: Terroir 2016

Type: Article

Authors

Lucile ALLAMY (1,2), Philippe DARRIET (2) and Alexandre PONS (2,3)

(1) Château Latour, Saint-Lambert, 33250 Pauillac, France.
(2) Université de Bordeaux, ISVV, EA4577, Unité de recherche OENOLOGIE, F-33882 Villenave d’Ornon, France. 3Seguin Moreau, Z.I. Merpins, B.P. 94, 16103 Cognac, France

Contact the author

Keywords

flavor, red wines, grapes, maturity, over ripening

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

Advances in the chemistry of rosé winemaking and ageing

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines.

Exploring resilience and competitiveness of wine estates in Languedoc-Roussillon in the recent past: a multi-level perspective

The Languedoc-Roussillon wineries are facing a decline in wine yields particularly PGI yields due to many factors. Climate change is just ones, but is expected to increase in the future. There is also structurally a large heterogeneity of yield profiles among terroirs, varieties and strategies. This work investigates the link between yield, competitiveness and resilience to explore how resilient winegrowers have been in the recent past. To this end two approaches have been combined; (i) an accountancy database analysis at estate scale and (ii) municipality level competitiveness analysis. A new resilience indicator that characterizes the capacity of an estate to absorb yield variation is also defined. The FADN database between 2000 and 2018 of ex-Languedoc-Roussillon (France) and other data are used to analyse the current situation and the past evolution of competitiveness and resilience by type of estate (type of farm: PGI and/or PDO & type of commercialization: bulk and/or bottles). The net margin, which defines competitiveness, is not correlated to yield for all types but depends on the type of commercialization and the level of specialisation. The resilience indicator shows that the net margin of estates specialized in PGI is particularly sensitive to yield declines. We also show that price evolutions seem to compensate the effect of yield losses for the majority of types. Municipality scale analysis shows the links between local pedoclimate, yield, commercialization strategies and price. Overlapping a PDO with a PGI does not always increase a municipality’s PGI competitiveness. It is difficult to make links between causes and effects due to the complexity of the wine production system. Production diversification may be a solution. Resorting to the two level of analysis helps resolving the data gap that is necessary to explore the links between yield and economic performance of the wine estates in the long term.

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.