Terroir 2004 banner
IVES 9 IVES Conference Series 9 La hiérarchisation des Coteaux du Languedoc: une application concrète du zonage vitivinicole

La hiérarchisation des Coteaux du Languedoc: une application concrète du zonage vitivinicole

Abstract

L’A.O.C. Coteaux du Languedoc est située dans le Sud de la France, dans la partie Ouest de la bordure méditerranéenne. Elle forme un vaste amphithéâtre largement ouvert sur la mer méditerranée. L’Appellation a été constituée en 1960 par le regroupement de 14 anciennes petites appellations d’origine représentant 55 communes éparpillées dans les départements de l’Aude, de l’Hérault et du Gard. Par la suite, plusieurs extensions successives ont conduit à un ensemble actuellement composé de 168 communes.
Un travail de hiérarchisation avec la reconnaissance de sous régions a débuté en 1982 avec l’individualisation des appellations St Chinian et Faugères puis Picpoul de Pinet ( vin blanc issu du seul cépage piquepoul) et Pic St Loup (1994). En 1995, face à de nouvelles demandes de reconnaissance en appellation sous régionales de la part de certaines anciennes appellations d’origine, l’Institut National des Appellations d’Origine (INAO) a estimé que les demandes ne correspondaient pas à des secteurs cohérents en terme de terroirs et a demandé qu’une étude complète de zonage viti-vinicole soit réalisée sur l’ensemble de l’aire Coteaux du Languedoc par un spécialiste en la matière : Jean-Claude JACQUINET, qui avait mis au point la méthode dite de la Chambre d’agriculture de l’Aude.
Cette étude a été rendue en mars 1997 et nous en présentons ici les grandes lignes.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Jacques Fanet

Directeur du Syndicat des Coteaux du Languedoc,
Au Mas de Saporta – CS 30030 – 34875 LATTES

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments

Assessing bunch architecture for grapevine yield forecasting by image analysis

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.