Terroir 2014 banner
IVES 9 IVES Conference Series 9 La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

Abstract

Onze sites viticoles sont aujourd’hui inscrits sur la Liste du Patrimoine mondial de l’Unesco au titre des Paysages culturels. Si le caractère viticole de ces sites constitue l’argument principal de la démonstration de leur valeur patrimoniale, le terroir et ses caractéristiques biophysiques et environnementales tendent cependant à apparaître sur le mode mineur par rapport aux dimensions esthétiques et culturelles. En d’autres termes, les « caractéristiques spécifiques du sol, de la topographie, du climat, du paysage et de la biodiversité » (définition OIV) sont le plus souvent mobilisées comme éléments descriptifs dans la présentation des sites, mais ce sont davantage les caractéristiques esthétiques, historiques, architecturales et socioculturelles qui fournissent les critères servant à la démonstration de leur « Valeur Universelle Exceptionnelle ».

Dans cet article, nous proposons une analyse de la place relative occupée par le « terroir viticole » dans les critères présentés à l’Unesco en vue d’une inscription sur la liste du Patrimoine mondial dans deux Paysages culturels viticoles inscrits : La Juridiction de Saint-Emilion (France) et la Région viticole historique de Tokaj.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Aline BROCHOT

LADYSS (Laboratoire Dynamiques Sociales et Recomposition des Espaces), UMR 7533 du CNRS 2, rue Valette 75005 Paris, France

Contact the author

Keywords

Patrimoine mondial, Paysages culturels viticoles, Description, Justification, Valeur Universelle Exceptionnelle, Juridiction de Saint-Emilion, Paysage Culturel de la Région viticole historique de Tokaj

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential.

The effect of ecological conditions on the germination of pollen, fecundation and yield of some grapevine cultivars in Skopje region, Republic of Macedonia

The ecological conditions (climatic factors and soil) during the whole year, and especially before flowering and during the time of flowering, have a great influence on the functional ability of pollen, the pollination, the fecundation and the yielding potential of the cultivars of grapevine.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Assessment of alternative sweetening methods for dealcoholized wine

In recent years, there has been an increase in demand for non-alcoholic wine with an ethanol content of less than 0.5% v/v. The dealcoholization process can take place by various methods, such as vacuum distillation or membrane technologies like osmotic distillation. Compared to distillation, membrane systems often require multiple passes or a combination of multiple separation methods. Complete or almost complete removal of ethanol significantly changes the sensory characteristics of wine.