Terroir 2014 banner
IVES 9 IVES Conference Series 9 La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

Abstract

Onze sites viticoles sont aujourd’hui inscrits sur la Liste du Patrimoine mondial de l’Unesco au titre des Paysages culturels. Si le caractère viticole de ces sites constitue l’argument principal de la démonstration de leur valeur patrimoniale, le terroir et ses caractéristiques biophysiques et environnementales tendent cependant à apparaître sur le mode mineur par rapport aux dimensions esthétiques et culturelles. En d’autres termes, les « caractéristiques spécifiques du sol, de la topographie, du climat, du paysage et de la biodiversité » (définition OIV) sont le plus souvent mobilisées comme éléments descriptifs dans la présentation des sites, mais ce sont davantage les caractéristiques esthétiques, historiques, architecturales et socioculturelles qui fournissent les critères servant à la démonstration de leur « Valeur Universelle Exceptionnelle ».

Dans cet article, nous proposons une analyse de la place relative occupée par le « terroir viticole » dans les critères présentés à l’Unesco en vue d’une inscription sur la liste du Patrimoine mondial dans deux Paysages culturels viticoles inscrits : La Juridiction de Saint-Emilion (France) et la Région viticole historique de Tokaj.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Aline BROCHOT

LADYSS (Laboratoire Dynamiques Sociales et Recomposition des Espaces), UMR 7533 du CNRS 2, rue Valette 75005 Paris, France

Contact the author

Keywords

Patrimoine mondial, Paysages culturels viticoles, Description, Justification, Valeur Universelle Exceptionnelle, Juridiction de Saint-Emilion, Paysage Culturel de la Région viticole historique de Tokaj

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Pioneering dynamic AgriVoltaics in viticulture: enhancing grapevine productivity, wine quality and climate protection through agronomical steering in a large-scale field study

Context and purpose of the study. Climate change threatens traditional winegrowing regions, with about 90% of areas like southern France at risk by the end of the century due to heatwaves and droughts.

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.