Terroir 2014 banner
IVES 9 IVES Conference Series 9 La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

Abstract

Onze sites viticoles sont aujourd’hui inscrits sur la Liste du Patrimoine mondial de l’Unesco au titre des Paysages culturels. Si le caractère viticole de ces sites constitue l’argument principal de la démonstration de leur valeur patrimoniale, le terroir et ses caractéristiques biophysiques et environnementales tendent cependant à apparaître sur le mode mineur par rapport aux dimensions esthétiques et culturelles. En d’autres termes, les « caractéristiques spécifiques du sol, de la topographie, du climat, du paysage et de la biodiversité » (définition OIV) sont le plus souvent mobilisées comme éléments descriptifs dans la présentation des sites, mais ce sont davantage les caractéristiques esthétiques, historiques, architecturales et socioculturelles qui fournissent les critères servant à la démonstration de leur « Valeur Universelle Exceptionnelle ».

Dans cet article, nous proposons une analyse de la place relative occupée par le « terroir viticole » dans les critères présentés à l’Unesco en vue d’une inscription sur la liste du Patrimoine mondial dans deux Paysages culturels viticoles inscrits : La Juridiction de Saint-Emilion (France) et la Région viticole historique de Tokaj.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Aline BROCHOT

LADYSS (Laboratoire Dynamiques Sociales et Recomposition des Espaces), UMR 7533 du CNRS 2, rue Valette 75005 Paris, France

Contact the author

Keywords

Patrimoine mondial, Paysages culturels viticoles, Description, Justification, Valeur Universelle Exceptionnelle, Juridiction de Saint-Emilion, Paysage Culturel de la Région viticole historique de Tokaj

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

One of the reasons of the spread of grapevine virus diseases in
vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation
specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and
maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.