Terroir 2014 banner
IVES 9 IVES Conference Series 9 The Hungarian system of geographical indications and the preparation of product specifications

The Hungarian system of geographical indications and the preparation of product specifications

Abstract

Following the 2008-2009 reform of the European Union’s common market organisation in wine all protected designations of origin and geographical indications were imposed to prepare a product specification that described the conditions of their use. In this paper, we describe this process and the Hungarian system of geographical indications. 

As set by EU regulation No. 1308/2013, geographical indications represent a specific wine quality that is related to the place of origin to a certain extent. The relationship is strong in case of protected designations of origin (PDO) and weak in case of protected geographical indications (PGI). The factors laying behind this relationship are regulated in the product specifications that had to be submitted to the European Commission by 31 December 2011 (for the already existing ones). Before that date the Hungarian system of geographical indications included 33 PDOs and 13 PGIs. However some of these geographical indications lost protection as their product specifications were not submitted (by intention). Following the recognition of a new PDO in 2013, now there are 31 PDOs and 5 PGIs in Hungary. The location of the Hungarian wine PDOs is presented on map 1. 

It is common to differentiate two types of systems of geographical indications: German and Latin ones. In German systems, geographical indications represent a quite diverse character and the wines are usually segmented upon the ripeness of grapes. The latter is somewhat obvious as the wine districts concerned are the northernmost grape growing areas. 

Meanwhile the Latin systems, originate from France and thus incorporating the concept of appellation d’origine contrôllée, put emphasis on the typicality of the given area. Therefore this approach concentrates on a much more limited scope of products that are strongly related to their place of origin.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

P. Gál (1), L. Martinovich (2), E.A. Molnár (2), G. Mikesy (2), J. Polgár(2), M. Mishiro (2), Z. Katona (2)

(1) National Council of Wine Communities, Corvinus University of Budapest 
(2) Institute of Geodes, Cartography and Remote Sensing (Budapest, Hungary)

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

High throughput winter pruning weight estimation based on wood volume evaluation 

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems. A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform. The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

The effects of different methods of soil management on the nutrient supply and the wine quality of organically grown Grüner Veltliner grapevines (wide-spaced high culture training system) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal).

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments