Terroir 2014 banner
IVES 9 IVES Conference Series 9 The Hungarian system of geographical indications and the preparation of product specifications

The Hungarian system of geographical indications and the preparation of product specifications

Abstract

Following the 2008-2009 reform of the European Union’s common market organisation in wine all protected designations of origin and geographical indications were imposed to prepare a product specification that described the conditions of their use. In this paper, we describe this process and the Hungarian system of geographical indications. 

As set by EU regulation No. 1308/2013, geographical indications represent a specific wine quality that is related to the place of origin to a certain extent. The relationship is strong in case of protected designations of origin (PDO) and weak in case of protected geographical indications (PGI). The factors laying behind this relationship are regulated in the product specifications that had to be submitted to the European Commission by 31 December 2011 (for the already existing ones). Before that date the Hungarian system of geographical indications included 33 PDOs and 13 PGIs. However some of these geographical indications lost protection as their product specifications were not submitted (by intention). Following the recognition of a new PDO in 2013, now there are 31 PDOs and 5 PGIs in Hungary. The location of the Hungarian wine PDOs is presented on map 1. 

It is common to differentiate two types of systems of geographical indications: German and Latin ones. In German systems, geographical indications represent a quite diverse character and the wines are usually segmented upon the ripeness of grapes. The latter is somewhat obvious as the wine districts concerned are the northernmost grape growing areas. 

Meanwhile the Latin systems, originate from France and thus incorporating the concept of appellation d’origine contrôllée, put emphasis on the typicality of the given area. Therefore this approach concentrates on a much more limited scope of products that are strongly related to their place of origin.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

P. Gál (1), L. Martinovich (2), E.A. Molnár (2), G. Mikesy (2), J. Polgár(2), M. Mishiro (2), Z. Katona (2)

(1) National Council of Wine Communities, Corvinus University of Budapest 
(2) Institute of Geodes, Cartography and Remote Sensing (Budapest, Hungary)

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Wine quality and safety are the main concerns of consumers and health agencies. Biogenic amines and polyamines, depending on their concentration and on individuals, in wine can constitute a potential public health concern due to their physiological and toxicological effects

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].