Terroir 2014 banner
IVES 9 IVES Conference Series 9 The Hungarian system of geographical indications and the preparation of product specifications

The Hungarian system of geographical indications and the preparation of product specifications

Abstract

Following the 2008-2009 reform of the European Union’s common market organisation in wine all protected designations of origin and geographical indications were imposed to prepare a product specification that described the conditions of their use. In this paper, we describe this process and the Hungarian system of geographical indications. 

As set by EU regulation No. 1308/2013, geographical indications represent a specific wine quality that is related to the place of origin to a certain extent. The relationship is strong in case of protected designations of origin (PDO) and weak in case of protected geographical indications (PGI). The factors laying behind this relationship are regulated in the product specifications that had to be submitted to the European Commission by 31 December 2011 (for the already existing ones). Before that date the Hungarian system of geographical indications included 33 PDOs and 13 PGIs. However some of these geographical indications lost protection as their product specifications were not submitted (by intention). Following the recognition of a new PDO in 2013, now there are 31 PDOs and 5 PGIs in Hungary. The location of the Hungarian wine PDOs is presented on map 1. 

It is common to differentiate two types of systems of geographical indications: German and Latin ones. In German systems, geographical indications represent a quite diverse character and the wines are usually segmented upon the ripeness of grapes. The latter is somewhat obvious as the wine districts concerned are the northernmost grape growing areas. 

Meanwhile the Latin systems, originate from France and thus incorporating the concept of appellation d’origine contrôllée, put emphasis on the typicality of the given area. Therefore this approach concentrates on a much more limited scope of products that are strongly related to their place of origin.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

P. Gál (1), L. Martinovich (2), E.A. Molnár (2), G. Mikesy (2), J. Polgár(2), M. Mishiro (2), Z. Katona (2)

(1) National Council of Wine Communities, Corvinus University of Budapest 
(2) Institute of Geodes, Cartography and Remote Sensing (Budapest, Hungary)

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes.

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Study of Malvasia di Candia Aromatica shelf-life: effect of time and temperature on aroma compounds through an HS-SPME GCxGC-Ms approach

Young white wines should be consumed within a short time after bottling to avoid loss of their fresh, fruity attributes. Shelf-life of white wines can be extended if they are stored under suitable conditions of time and temperature prior to consumption.

Determination of steviol glycosides in wine by HPLC

The SCL laboratory in Bordeaux is one of the two official control laboratories for wine and wine products in france, under the authority of the ministry of finance and two of its general directorates: the DGCCRF (directorate general for competition, consumer affairs and fraud control) and the DGDDI (directorate general of customs and excise duties). In this capacity, it verifies the regulatory compliance of wines and investigates any possible falsifications or fraud. Steviol glycosides are natural sweeteners that are not authorized as additives in wine.