Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

Abstract

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds. Microwave-assisted extraction (MW) is a novel extraction technique for winemaking, widely applied in other foods. Stems addition (S) during vinification can be a sustainable technology for phenolic and aroma contribution without additional cost. Therefore, this study aimed to evaluate the combined effect of MW application with stem additions in different conditions, before fermentation, on the chemical composition and sensory properties of Bonarda wines.

METHODS: During two consecutive vintages (2018-2019), 450 kg of grapes were harvested (≈24°Brix) from a commercial vineyard (Mendoza, Argentina), and made into wine in 25 L following a standard protocol. The experimental design consisted of ten treatments (two factors) by triplicate. Two maceration strategies were applied [control (C), and microwaved-assisted extraction after grape crushing (MW; 2450 MHz, 7600 W, 45-50°C)], combined with five stem-contact conditions [control without stems (WS), 50% stems addition (S50), 50% stems addition + MW of the stems (S50MW; 2450 MHz, 7600 W, 60°C), 100% stems addition (S100), 100% stems addition + MW (S100MW)]. Wines were analyzed for basic chemistry (1), phenolic composition and color parameters (2-5), polysaccharides (6), and aroma profiles (7). Additionally, a descriptive sensory analysis (QDA) was performed with 19 panelists in 8 sessions, and 22 attributes were established.

RESULTS: In both seasons, the application of microwaves significantly reduced microbial flora in musts (fungi, yeasts, and acetic acid bacteria), in addition to inhibiting enzymatic activity (cellulase and pectinase). Due to the significant difference of the vintage and its interaction with some of the studied factors, the chemical and sensory characterization of wines were evaluated separately for each season. The 2018 wines showed higher pH with stem additions and MW application in both matrices. Stem additions increased tannin content by 63% (S100) and by >35% for the other treatments; while MW consistently improved phenolic extraction (mainly, anthocyanins and derivatives), and polymeric pigments formation. Likewise, combined strategies increased polysaccharides extraction (FI, 165 kDa; FII, 45 kDa; FIII, 12 kDa), enhanced wine color (greater saturation), and intensified violet hue. Finally, the PCA including sensory variables described the MWS50 wines with higher color intensity and chocolate aroma, and 100% stems addition treatments with more astringency and violet hue. The behavior observed in 2019 was similar, with a more marked effect of MW on wine color (C*ab and polymeric pigments).

CONCLUSIONS:

The reported results are promising and are considered the first advance in the knowledge of the impact of the proposed technological strategies on the chemical and sensory quality of red wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Martín Fanzone 

Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina.,Ignacio Coronado. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Santiago Sari. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Anibal Catania. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Mariona Gil i Cortiella. Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile. Cristina Ubeda. Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. Instituto de Ciencias Biomédicas, Facultad de Ciencias, Universidad Autónoma de Chile, Santiago 8910060, Chile. Mariela Assof. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Viviana Jofré. Estación Experimental Mendoza, Instituto Nacional de Tecnología Agropecuaria, San Martín 3853, M5528AHB, Luján de Cuyo, Mendoza, Argentina. Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP5519, Guaymallén, Mendoza, Argentina. Vilma Morata de Ambrosini. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo, Bernardo de Irigoyen 375, 5600, Mendoza, Argentina. Alvaro Peña Neira. Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago 8820808, Chile.

Contact the author

Keywords

microwave-assisted extraction, stems, bonarda, phenolics, polysaccharides, aromas, sensory analysis

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

Soil survey and continuous classification for terroir delineation in the “Colli Orientali del Friuli” wine production area

The combination of a non-parametric dissimilarity index with auger boring recordings was tested in a project of soil suitability evaluation for quality wine production in a 2000-ha hill slope portion of the “Colli Orientali del Friuli” AOC district (Italy).

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.