Terroir 2014 banner
IVES 9 IVES Conference Series 9 The history of the first demarkated wine region of the world – the Tokaj wine region

The history of the first demarkated wine region of the world – the Tokaj wine region

Abstract

The optimal climatic conditions of the region were proved in 1867, when a leaf-print of Vitis tokaiensis was found in a stone from miocen age (13 million years ago). 

Concerning the viticulture, already the Hungarian tribes coming to the Carpathian basin knew it and started to practice at the end of the 9th century. 

In 1241, after the Tatar invasion IV. king Béla revitalized the region bringing also foreigner „vinitors”. 
In the 15th century, under the rules of king Mathias the Tokaji winemaking strenghtened and nothern Hungarian cities created vineyards and wineries in the region. 

In the 16th century the Turkish army attackted and later occupied the southern part of Hungary, thus the importance of Tokaj increased. 
The first written memory about Tokaji Aszú wine dates back to 1571, it was found amongst the documents of the famous Garay family. 

In the first part of the 17th century, under the ownership of Rákóczi family the viticulture flourished. In 1613 and later in 1641 the towns organized a conference, where the strict regulation of viticulture and winemaking was accepted in 48 points. 

In 1723 Mátyás Bél published a study of Hungary. Connecting to this his collegue, János Matolai created the first classification of the World rating the vineyards into three classes. 

On the 1st of October in 1737, VI. king Károly announced the first demarcation of Tokaj creating a closed wine region and giving the possibility to those 22 towns to use „Tokaji” name. The viticultural and winemaking rules were specified and the planting was allowed only with licence. 

In 1798 the vineyard classification was redeveloped by Antal Szirmay, based on the work of János Dercsényi. 

During the 19th and the 20th century the knowledge of terroirs was collected further in the families. After the political changes in 1989 detailed work started at the wineries to be able to discover the possibilities of the extremely rich and diverse terroirs created by the active and colorful vulcanism and the outstanding macro- and microcimatical circumstances. 

In 2002 Tokaj obtained the Wold Heritage title in „cultural landscape” category as “Tokaj Historical Wine Region”.

DOI:

Publication date: July 28, 2020

Issue: Terroir 2014

Type: Article

Authors

Péter Molnár PhD

Patricius Winery, Tokaj 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings. Riesling wines offer a wide array of styles from crisp sparkling wines to highly concentrated and sweet Trockenbeerenauslese or Icewines. However, its thin berry skin makes Riesling more vulnerable to detrimental environmental threats than other white wine varieties.  

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.