Terroir 2014 banner
IVES 9 IVES Conference Series 9 Construction of a 3D vineyard model using very high resolution airborne images

Construction of a 3D vineyard model using very high resolution airborne images

Abstract

In recent years there has been a growth in interest and number of research studies regarding the application of remote optical and thermal sensing by unmanned aerial vehicle (UAV) in agriculture and viticulture. Many papers report on the use of images to map or estimate the growth and water status of plants, or the heterogeneity of different parcels. Most often, NDVI or other similar indices are used. However, analysis of this type of image is difficult in vineyards covered with grass, because contrast between the green of the grass and the green of the vine is low and difficult to classify. This paper presents the acquisition methodology of very high-resolution (5 [cm]) images and their processing to construct a three-dimensional surface model for the creation of precise digital surface and terrain models in order to separate different strata of a vineyard.

The images were acquired with a Sensefly Swinglet CAM unmanned aerial vehicle at an altitude of 110 [m], allowing for a resolution of 5 [cm]. The images were combined using Pix4D software, with a lateral overlap of 75% and a longitudinal overlap of 60%. The produced digital terrain and surface model was subtracted and an extraction mask containing only vine pixel was created. The results show the importance of using a precise digital terrain model. The raster file obtained by subtracting the DSM and the DTM showed values between -0.1 and + 2 m. in good accordance with the average value of the vine. The great majority of pixels fell between the threshold (0.5 [m]) and the topping values 1.6[m]). Using this procedure and parameters, an extremely precise surface model is obtained, as well as the pattern of the vineyard rows and, to some extent, the location of different plants stocks. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

DOI:

Publication date: July 29, 2020

Issue: Terroir 2014

Type: Article

Authors

S Burgos (1), M Mota (1), D. Noll (1), W. Metz (1), N. Delley (2), M. Kasser (2), B. Cannelle (2)

(1) University for Viticulture and Oenology Changins, 1260 Nyon Switzerland 
(2) School of Engineering and management Vaud (HEIG-VD), 1400 Yverdon, Switzerland 

Contact the author

Keywords

UAV, vineyard, green cover, 3D-models, precision viticulture

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species diversity of many of the relevant ecological niches within the broader wine environment, from vineyard soils to plants and grapes to fermentation. The data highlight that species identities and diversity significantly impact agronomic performance of vineyards as well as wine quality, but the complexity of these systems and of microbial growth dynamics has defeated attempts to offer actionable tools to guide or predict specific outcomes of ecosystem-based interventions.

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Caractéristiques édaphiques et potentialités qualitatives des terroirs du vignoble languedocien

Dans le vignoble languedocien, les potentialités qualitatives des terroirs dépendent surtout de leurs caractéristiques édaphiques : la fertilité agronomique d’une part et sa nature géopédologique d’autre part.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.