Terroir 2014 banner
IVES 9 IVES Conference Series 9 Construction of a 3D vineyard model using very high resolution airborne images

Construction of a 3D vineyard model using very high resolution airborne images

Abstract

In recent years there has been a growth in interest and number of research studies regarding the application of remote optical and thermal sensing by unmanned aerial vehicle (UAV) in agriculture and viticulture. Many papers report on the use of images to map or estimate the growth and water status of plants, or the heterogeneity of different parcels. Most often, NDVI or other similar indices are used. However, analysis of this type of image is difficult in vineyards covered with grass, because contrast between the green of the grass and the green of the vine is low and difficult to classify. This paper presents the acquisition methodology of very high-resolution (5 [cm]) images and their processing to construct a three-dimensional surface model for the creation of precise digital surface and terrain models in order to separate different strata of a vineyard.

The images were acquired with a Sensefly Swinglet CAM unmanned aerial vehicle at an altitude of 110 [m], allowing for a resolution of 5 [cm]. The images were combined using Pix4D software, with a lateral overlap of 75% and a longitudinal overlap of 60%. The produced digital terrain and surface model was subtracted and an extraction mask containing only vine pixel was created. The results show the importance of using a precise digital terrain model. The raster file obtained by subtracting the DSM and the DTM showed values between -0.1 and + 2 m. in good accordance with the average value of the vine. The great majority of pixels fell between the threshold (0.5 [m]) and the topping values 1.6[m]). Using this procedure and parameters, an extremely precise surface model is obtained, as well as the pattern of the vineyard rows and, to some extent, the location of different plants stocks. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

DOI:

Publication date: July 29, 2020

Issue: Terroir 2014

Type: Article

Authors

S Burgos (1), M Mota (1), D. Noll (1), W. Metz (1), N. Delley (2), M. Kasser (2), B. Cannelle (2)

(1) University for Viticulture and Oenology Changins, 1260 Nyon Switzerland 
(2) School of Engineering and management Vaud (HEIG-VD), 1400 Yverdon, Switzerland 

Contact the author

Keywords

UAV, vineyard, green cover, 3D-models, precision viticulture

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.

Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Several trunk diseases cause decline and premature dieback of grapevines. In vineyards, these pathogens gain entry into plants through unprotected wounds. Wounds are also frequently infected during the propagation stages. The pathogens survive in infected plants in a latent form and cause disease in older grapevines or in plants that are