Terroir 2014 banner
IVES 9 IVES Conference Series 9 Construction of a 3D vineyard model using very high resolution airborne images

Construction of a 3D vineyard model using very high resolution airborne images

Abstract

In recent years there has been a growth in interest and number of research studies regarding the application of remote optical and thermal sensing by unmanned aerial vehicle (UAV) in agriculture and viticulture. Many papers report on the use of images to map or estimate the growth and water status of plants, or the heterogeneity of different parcels. Most often, NDVI or other similar indices are used. However, analysis of this type of image is difficult in vineyards covered with grass, because contrast between the green of the grass and the green of the vine is low and difficult to classify. This paper presents the acquisition methodology of very high-resolution (5 [cm]) images and their processing to construct a three-dimensional surface model for the creation of precise digital surface and terrain models in order to separate different strata of a vineyard.

The images were acquired with a Sensefly Swinglet CAM unmanned aerial vehicle at an altitude of 110 [m], allowing for a resolution of 5 [cm]. The images were combined using Pix4D software, with a lateral overlap of 75% and a longitudinal overlap of 60%. The produced digital terrain and surface model was subtracted and an extraction mask containing only vine pixel was created. The results show the importance of using a precise digital terrain model. The raster file obtained by subtracting the DSM and the DTM showed values between -0.1 and + 2 m. in good accordance with the average value of the vine. The great majority of pixels fell between the threshold (0.5 [m]) and the topping values 1.6[m]). Using this procedure and parameters, an extremely precise surface model is obtained, as well as the pattern of the vineyard rows and, to some extent, the location of different plants stocks. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

DOI:

Publication date: July 29, 2020

Issue: Terroir 2014

Type: Article

Authors

S Burgos (1), M Mota (1), D. Noll (1), W. Metz (1), N. Delley (2), M. Kasser (2), B. Cannelle (2)

(1) University for Viticulture and Oenology Changins, 1260 Nyon Switzerland 
(2) School of Engineering and management Vaud (HEIG-VD), 1400 Yverdon, Switzerland 

Contact the author

Keywords

UAV, vineyard, green cover, 3D-models, precision viticulture

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir. The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore

Laying footprints on a new path: proper accounting of biogenic fluxes makes viticulture carbon neutral

To limit the acceleration of global warming we need to reduce greenhouse gases emissions (GHG), making our production processes more carbon-efficient and optimizing absorptions.

A new chemiluminescence method related to molecules derived from Botrytis cinerea for characterization of Aszu wines from Tokaj, from Hungary

For the chemical characterization of Aszu wines from Tokaj region our aim is to develop a biochemical method which is related to Botrytis cinerea.