Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Abstract

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality. However, the overall effect of these agricultural practices depends on the soil water availability, the soil fertility, and the grape cultivar response. Under semiarid conditions, the intensity of competition for water and nutrients associated to cover crop practice can be a handicap for a regulation of grape yield and quality. Also, the effect of cover crops on soil biology under those conditions is poorly understood.

Methods and Results: In the present work we present results of a three year’s experiment studying the effect of combining natural green cover and deficit irrigation on soil microbiome, plant water and nutritional status, and grape yield and quality, in two contrasting genotypes. Changes in functional diversity of microbiomes were mainly associated with soil moisture and also changed throughout the vegetative period. Nevertheless, organic matter decomposition assays determined that the maintenance of the cover implies not only a higher rate of decomposition of organic matter but also that a less fraction of it is degraded, favoring the accumulation of carbon in the soil. Under our experimental conditions, green cover reduced plant growth and yield due to an excess of competition for water regardless of genotype. However, the cover crop had a positive effect on grape quality increasing sugar and phenolic content. 

Conclusions: 

The maintenance of cover crop in vineyards under semiarid areas such as the Mediterranean basin, generates a balance between positive effects such as the increase of organic C in the soil or the improvement of the quality of the grape and negative effects such as the decrease in the availability of water in the soil or the decline of yields.

Significance and Impact of the Study: This study has shown that more sustainable soil management practices can have clear positive effects on the environmental services of the agroecosystem and yield quality. These results open a window to explore this type of management in less studied environments such as the Mediterranean.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

José M. Escalona1,2*, Antonia Romero-Munar1, Josefina Bota1,2, Maurici Mus1, Elena Baraza1,2

Research Group of Plant Biology Under Mediterranean Conditions. Biology Department of Balearic Island University, Ctra Valldemossa km 7,5. 07122 Palma, Spain
Agro-Environmental and Water Economy Research Institute (INAGEA), Ctra Valldemossa km 7,5. 07122 Palma, Spain

Contact the author

Keywords

Cover crop, microbiome, grapevine, ecosystem services

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.