Terroir 2014 banner
IVES 9 IVES Conference Series 9 Fractal analysis of the hydrological information obtained from high-spatial resolution dems: application in terroir zoning of d.o. campo de Borja (Spain)

Fractal analysis of the hydrological information obtained from high-spatial resolution dems: application in terroir zoning of d.o. campo de Borja (Spain)

Abstract

One of the characteristics of the terroir zoning studies that is more complex to manage is the scale dependence. Thus, terroir zoning studies of the same area at different scales are comparable but not equal. Fractal analysis has demonstrated to be a suitable tool to characterize and model natural elements within a defined range of scales. 

Nowadays, the fast evolution of the GISs and the availability of high-resolution topographic information allow to carry out studies considered unthinkable some decades ago. 

Parallelism between the elements which condition the drainage networks of a landscape, and the elements which define the terroir has been observed. It is well known by geomorphologists that the shape of the drainage networks (dendritic, parallel, radial, etc.) depends on natural factors such as climate, vegetation and geological characteristics, particularly lithology and structure, which also characterize the terroir of a region. 

The main objectives of the present study are the quantitative characterization, using techniques of fractal analysis, of the drainage networks of the D.O. Campo de Borja, and the analysis of its relationship with the vineyard distribution within the region. The studied drainage networks have been extracted from a DEM with a resolution of 5 meters. 

The results show the suitability of the study and encourage to deepen into the relationship between the drainage networks crossing the landscape, the geological and topographic characteristics of the environment, and the distribution of the vineyard within the region.

DOI:

Publication date: July 29, 2020

Issue: Terroir 2014

Type: Article

Authors

Joaquín CÁMARA (1), Vicente GÓMEZ-MIGUEL (1), Miguel Ángel MARTÍN (2)

(1) Departamento de Edafología, Universidad Politécnica de Madrid, ETSI Agrónomos 28040 Madrid, Avda. Puerta de Hierro 2, Spain 
(2) Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, ETSI Agrónomos 28040 Madrid, Avda. Puerta de Hierro 2, Spain 

Contact the author

Keywords

fractal analysis, terroir zoning, drainage networks, vineyard distribution, DEM, GIS

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Comportement du cépage Mourvèdre dans l’aire d’Appellation d’Origine Contrôlée de Bandol

The Appellation d’Origine Contrôlée of Bandol covers an area of ​​1365 ha, 83% of which are planted with vines, the annual production being around 40,000 hl. Among the wines produced, there are mainly reds which assert themselves over time, but also rosés characterized by their pale colour, generally orange; the whites represent a small part of the production. The main grape variety of this AOC is Mouvèdre, of Spanish origin, which is also found in Provence and Languedoc.

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.