Terroir 2014 banner
IVES 9 IVES Conference Series 9 Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences


ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce. The aim of this work was to evaluate the effect of terroir on carbon and nitrogen stable isotope natural abundance within a single grape growing farm. Three vineyards representative of three terroirs within a grape growing farm were selected. The mesoclimatic differences between them can be considered negligible, and crop management was in general terms the same. Therefore, the differences in plant behaviour should be majorly a consequence of soil characteristics (deep gravely vs. shallower loamy soil, cover crop vs. bare soil). During five consecutive seasons, plant vegetative growth and stem water potential (Ψs) were monitored throughout the growing season and, at harvest, yield and grape composition were determined including carbon (δ13C) and nitrogen (δ15N) isotopic ratios. Consistent differences for both δ13C and δ15N were found when the three terroirs were compared. On the one hand, δ13C reflected well the differences in water availability arising from either soil characteristics (deep gravelly vs. shallower loamy soil) and from the presence of a cover crop. On the other hand, δ15N was clearly higher in the gravelly soil area, possibly indicating nitrate leakage, since soil organic matter is known to have higher δ15N than inorganic fertilizers. The competition the cover crop exerted for N was reflected in berry nitrogen content but, on the contrary, did not affect δ15N.


Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article



Dpto. Prod. Agraria, Univ. P. Navarra, 31006 Pamplona, NA, Spain. 

Contact the author


natural isotope abundance, water use efficiency, water status, nutrition, nitrogen sources, Vitis vinifera L.


IVES Conference Series | Terroir 2014


Related articles…

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Grape cane is a viticultural by-product that is currently underused or not used at all. Therefore, it bears a high potential for valorization due to the presence of anti-microbially active stilbenoids, being biologically relevant for plant defense. These compounds are highly interesting for applications in the agricultural sector as well as for the food and feed industry.


Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Wine quality is influenced by grape maturity, typically monitored by measuring sugar content and acidity.

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.