Terroir 2014 banner
IVES 9 IVES Conference Series 9 The vine and the hazelnut as elements of characterization of a terroir

The vine and the hazelnut as elements of characterization of a terroir

Abstract

The research examines how two characteristic cultivations of a territory like the vine and the hazelnut shape the identity of a unique terroir: Langhe (North West italy). 

The two cultivations are part of important agri-food chains for the analysed territory and its economy, while they also model its landscape. 

The vine represents a Universal Value rooted in the landscape modelled by the human work and in the culture of the place; part of this culture is the entire wine chain, which manifests itself through the presence of several settlement and architectural elements related to wine maturing and winemaking techniques. Therefore the wine landscape of Langhe is the result of a “wine tradition” which has been moving and evolving since ancient times, making up the centre of the socio-economic life of the territory. 

In this context the crop of hazelnut, which has always been present as a complementary element in the food tradition of the area, is knowing a new interest in recent decades, nurtured by the important confectionary sector developing in the territory and well known at an international level. 

The inquiry has been conducted through face-to-face interviews with a selected group of wineries and hazelnut producers. 

The research work emphasizes how the choices made by the winemakers and hazelnut producers of the territory are the key element for the preservation and transformation of the landscape, true intangible asset of the terroir, and continue to represent the main axis of its economic development. This is achieved by diminishing on the one hand the production of wine quantity in favour of wine quality, while encouraging on the other the conversion of the land less suitable for viticulture to hazelnut crop, which is giving true added value to the territory.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Alessio Marco LAZZARI (1), Danielle BORRA (1), Stefano MASSAGLIA (1)

(1) Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2,10095 Grugliasco (To),Italy 

Contact the author

Keywords

Barbaresco, Barbera, Barolo, Dolcetto, Hazelnut, Landscape, Langhe, Terroir, UNESCO

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors. In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region. Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

Distribution of photosynthates towards the grapes: effects of leaf removal and cluster thinning applied before veraison in cv. Verdejo

The relationship between grape production and leaf surface is a highly debated aspect in terms of the impact it may have on the composition and quality of grapes, especially in areas that focus their cultivation on high-quality wine. In many occasions, the limitation of the unitary production level in these areas is claimed to be the main factor for achieving high quality levels in the wine, forgetting the importance of the source-sink relationship and other environmental factors and management of the canopy. Taking this consideration into account, this work seeks to know the response of the vine as a whole, and the individual shoot as well, to the application of various alternatives of leaves and clusters removal, carried out in the phase immediately before veraison, in cv. Verdejo, in Spain.

la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

La zonazione viticola rappresenta un importante strumento di indagine per valutare e interpretare le potenzialità produttive e qualitative di un territorio. Con l’obiettivo di studiare come l’ambiente influisca sulla qualità dell’uva nell’areale di Brisighella, sono stati monitorati, nelle annate 2007, 2008 e 2009, 14 vigneti per la varietà Albana e 38 per la varietà Sangiovese, rappresentativi di una area vitata di circa 1000 ha.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.