Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Abstract

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening. Accordingly, they lead to a greater understanding of the potential future impacts of climate change and adaptation strategies necessary at different spatial and temporal scales. Within the context of climate change, this paper presents the impacts of the local environment and viticultural practices on grapevine behaviour in the mid-Loire Valley winegrowing region, France, namely in the AOP Coteaux du Layon (variety: Chenin) and the AOP Saumur Champigny (variety: Cabernet franc). Both areas were equipped with climatic instruments (weather stations, temperature sensors and rain gauges) and during the growing season, phenological observations and berry composition analyses were effectuated. A strong spatial variability in temperatures and bioclimatic indices was observed within the vineyards. This variability, related to altitude, aspect and nearness to river, was even more evident during extreme events, such as risk of spring frost. Overall, the local climate variability in relation with soil characteristics, notably water holding capacity, was related to grapevine growth and berry composition. Vineyard plots with greater heat accumulation had earlier phenological stages and higher maturity indices. These results illustrate that adaptation solutions to climate change do exist at local scales, in terms of spatial temperature variability, soil properties and viticultural practices, particularly those related to soil management strategies. As adaptation to climate change is essential, these results show that it is necessary to conduct studies at fine terroir scales in order to better understand the spatial variability of local climate and its influences on grapevine behaviour. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Etienne NEETHLING (1,2), Théo PETITJEAN (1), Gérard BARBEAU (1), Hervé QUÉNOL (2)

(1) INRA UE 1117, Vigne et Vin, UMT Vinitera², 42, rue Georges Morel, Beaucouzé, France 
(2) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France 

Contact the author

Keywords

Spatial variability, climate, soil, viticulture, terroir, local scales, adaptation, climate change

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences.

The Gibberellic-Acid Insensitive gene Vvgai1 impacts both vegetative growth and organogenesis rate in Vitis labruscana

Context and purpose of the study. As other perennial crops grapevine is facing the challenges of climate changes. One of the major issues is global warming and variations of the water budget.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

LIFE Climawin: impacts, risks and opportunities in the transition to sustainable viticulture

The LIFE Climawin project drives the sustainable transformation of the wine sector in response to climate change through the implementation of an innovative management model applied at the demonstrative winery, Bosque de Matasnos.