Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Abstract

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening. Accordingly, they lead to a greater understanding of the potential future impacts of climate change and adaptation strategies necessary at different spatial and temporal scales. Within the context of climate change, this paper presents the impacts of the local environment and viticultural practices on grapevine behaviour in the mid-Loire Valley winegrowing region, France, namely in the AOP Coteaux du Layon (variety: Chenin) and the AOP Saumur Champigny (variety: Cabernet franc). Both areas were equipped with climatic instruments (weather stations, temperature sensors and rain gauges) and during the growing season, phenological observations and berry composition analyses were effectuated. A strong spatial variability in temperatures and bioclimatic indices was observed within the vineyards. This variability, related to altitude, aspect and nearness to river, was even more evident during extreme events, such as risk of spring frost. Overall, the local climate variability in relation with soil characteristics, notably water holding capacity, was related to grapevine growth and berry composition. Vineyard plots with greater heat accumulation had earlier phenological stages and higher maturity indices. These results illustrate that adaptation solutions to climate change do exist at local scales, in terms of spatial temperature variability, soil properties and viticultural practices, particularly those related to soil management strategies. As adaptation to climate change is essential, these results show that it is necessary to conduct studies at fine terroir scales in order to better understand the spatial variability of local climate and its influences on grapevine behaviour. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Etienne NEETHLING (1,2), Théo PETITJEAN (1), Gérard BARBEAU (1), Hervé QUÉNOL (2)

(1) INRA UE 1117, Vigne et Vin, UMT Vinitera², 42, rue Georges Morel, Beaucouzé, France 
(2) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France 

Contact the author

Keywords

Spatial variability, climate, soil, viticulture, terroir, local scales, adaptation, climate change

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Non-saccharomyces yeasts in the biocontrol of grape molds in vineyards to reduce the use of pesticides

The wide diffusion of organic cultivation of vineyards and the need to reduce the use of pesticides highlights the urgent need for alternative and sustainable methods of vine protection by pathogen molds.