Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Abstract

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening. Accordingly, they lead to a greater understanding of the potential future impacts of climate change and adaptation strategies necessary at different spatial and temporal scales. Within the context of climate change, this paper presents the impacts of the local environment and viticultural practices on grapevine behaviour in the mid-Loire Valley winegrowing region, France, namely in the AOP Coteaux du Layon (variety: Chenin) and the AOP Saumur Champigny (variety: Cabernet franc). Both areas were equipped with climatic instruments (weather stations, temperature sensors and rain gauges) and during the growing season, phenological observations and berry composition analyses were effectuated. A strong spatial variability in temperatures and bioclimatic indices was observed within the vineyards. This variability, related to altitude, aspect and nearness to river, was even more evident during extreme events, such as risk of spring frost. Overall, the local climate variability in relation with soil characteristics, notably water holding capacity, was related to grapevine growth and berry composition. Vineyard plots with greater heat accumulation had earlier phenological stages and higher maturity indices. These results illustrate that adaptation solutions to climate change do exist at local scales, in terms of spatial temperature variability, soil properties and viticultural practices, particularly those related to soil management strategies. As adaptation to climate change is essential, these results show that it is necessary to conduct studies at fine terroir scales in order to better understand the spatial variability of local climate and its influences on grapevine behaviour. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Etienne NEETHLING (1,2), Théo PETITJEAN (1), Gérard BARBEAU (1), Hervé QUÉNOL (2)

(1) INRA UE 1117, Vigne et Vin, UMT Vinitera², 42, rue Georges Morel, Beaucouzé, France 
(2) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France 

Contact the author

Keywords

Spatial variability, climate, soil, viticulture, terroir, local scales, adaptation, climate change

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.

Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Atypical ageing (ATA) is a wine aroma fault occurring in white wines characterised by an early loss of varietal aroma as well as nuances of wet mop, acacia blossom, shoe polish and dirty rag among others. 2-aminoacetophenone (2AAP) – a degradation product of indole-3-acetic acid (IAA) – has been described as the major odour-active compound and chemical marker responsible for this off-flavour. Depending on the aroma intensity of wines, its odour threshold varies from 0.5 to 10.5 μg/L. It seems that a stress reaction in the vineyard triggered by climatic, pedological and viticultural factors can ultimately cause ATA development in wines and therefore shorten their shelf-life.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.