The future of wine grape growing regions in europe

Abstract

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science. 

We applied the MaxEnt modelling approach to predict the possible effect of climate change on wine grape distribution as a species at European scale using basic bioclim variables. Two climate models were developed for 2050 and 2080 by Hadley Centre Coupled Model and Commonwealth Scientific and Industrial Research Organization. The area loss is calculated for the main wine producing countries in Europe (Portugal, Spain, France, and Italy). 

Based on the analysis of variable contribution we can conclude that annual mean temperature has great importance in model performance while precipitation variables show much less contribution. The prediction of the best model for the present fits well to the known wine growing regions. Future predictions show consistent changes based on various climate scenarios: wine growing regions are predicted to shift northwards. At the same time, additional problems might arise in the Mediterranean region, especially in the Iberian Peninsula where the most radical changes are predicted (30 % losses in average). France and Italy are less affected. For 2080 the suitable areas continuously decrease except for France where only a small amount of area loss is predicted. The predicted stability until 2050 is dynamic implying adaptation such as change of grape varieties, selection or modification of cultivation technology could be necessary even in those regions which remains suitable in the future.

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

János P. TÓTH (1), Zsolt VÉGVÁRI (2)

(1) Research Institute for Viticulture and Oenology, Tarcal, H-3915 Tarcal, Könyves Kálmán Str. 54., Hungary 
(2) Department of Conservation Zoology, University of Debrecen – Hortobágy National Park Directorate, H-4024 Debrecen Sumen Str. 2., Hungary

Contact the author

Keywords

Vitis vinifera, climate change, MaxEnt, bioclim, climate scenarios

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.

Exploring changes in browning kinetics, color, and antioxidants due to dealcoholization of wine

The global consumer demand for low or non-alcoholic wine is growing steadily in recent years, driven by health concerns, religious beliefs, and personal taste preferences etc.. Consequently, the removal of alcohol from wine can significantly alter its chemical and sensory properties, including color, aroma, and taste, which make a significant challenge for consumer to accept these products. Ethanol plays a crucial role in various chemical reactions and interactions that contribute to the development of wine’s characteristics.

Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

The “Anjou Terroirs” programme aims at bringing the necessary scientific basis for a ratio­nal and reasoned exploitation of the technical itinerary of the terroir. The scale study is 1/12500. For the mapping, many parameters, such as the granulometry or the depth of soil are observed to each point of caracterisation.