The future of wine grape growing regions in europe

Abstract

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science. 

We applied the MaxEnt modelling approach to predict the possible effect of climate change on wine grape distribution as a species at European scale using basic bioclim variables. Two climate models were developed for 2050 and 2080 by Hadley Centre Coupled Model and Commonwealth Scientific and Industrial Research Organization. The area loss is calculated for the main wine producing countries in Europe (Portugal, Spain, France, and Italy). 

Based on the analysis of variable contribution we can conclude that annual mean temperature has great importance in model performance while precipitation variables show much less contribution. The prediction of the best model for the present fits well to the known wine growing regions. Future predictions show consistent changes based on various climate scenarios: wine growing regions are predicted to shift northwards. At the same time, additional problems might arise in the Mediterranean region, especially in the Iberian Peninsula where the most radical changes are predicted (30 % losses in average). France and Italy are less affected. For 2080 the suitable areas continuously decrease except for France where only a small amount of area loss is predicted. The predicted stability until 2050 is dynamic implying adaptation such as change of grape varieties, selection or modification of cultivation technology could be necessary even in those regions which remains suitable in the future.

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

János P. TÓTH (1), Zsolt VÉGVÁRI (2)

(1) Research Institute for Viticulture and Oenology, Tarcal, H-3915 Tarcal, Könyves Kálmán Str. 54., Hungary 
(2) Department of Conservation Zoology, University of Debrecen – Hortobágy National Park Directorate, H-4024 Debrecen Sumen Str. 2., Hungary

Contact the author

Keywords

Vitis vinifera, climate change, MaxEnt, bioclim, climate scenarios

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.

Soil electrical resistivity, a new and revealing technique for precision viticulture

High resolution spatial information of soil electrical resistivity (ER) was gathered to assess the spatial variability patterns of vegetative growth of two commercial vineyards (Vitis vinifera L. cv.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.