The future of wine grape growing regions in europe

Abstract

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science. 

We applied the MaxEnt modelling approach to predict the possible effect of climate change on wine grape distribution as a species at European scale using basic bioclim variables. Two climate models were developed for 2050 and 2080 by Hadley Centre Coupled Model and Commonwealth Scientific and Industrial Research Organization. The area loss is calculated for the main wine producing countries in Europe (Portugal, Spain, France, and Italy). 

Based on the analysis of variable contribution we can conclude that annual mean temperature has great importance in model performance while precipitation variables show much less contribution. The prediction of the best model for the present fits well to the known wine growing regions. Future predictions show consistent changes based on various climate scenarios: wine growing regions are predicted to shift northwards. At the same time, additional problems might arise in the Mediterranean region, especially in the Iberian Peninsula where the most radical changes are predicted (30 % losses in average). France and Italy are less affected. For 2080 the suitable areas continuously decrease except for France where only a small amount of area loss is predicted. The predicted stability until 2050 is dynamic implying adaptation such as change of grape varieties, selection or modification of cultivation technology could be necessary even in those regions which remains suitable in the future.

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

János P. TÓTH (1), Zsolt VÉGVÁRI (2)

(1) Research Institute for Viticulture and Oenology, Tarcal, H-3915 Tarcal, Könyves Kálmán Str. 54., Hungary 
(2) Department of Conservation Zoology, University of Debrecen – Hortobágy National Park Directorate, H-4024 Debrecen Sumen Str. 2., Hungary

Contact the author

Keywords

Vitis vinifera, climate change, MaxEnt, bioclim, climate scenarios

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain.

Modification on grape phenolic and aromatic composition due to different leafroll virus infections

Viral diseases are reported to cause several detrimental effects on grapevine. Among them, leafroll, due to single or mixed infection of GLRaV1 and GLRaV3, and rugose wood, associated to GVA, are considered the most widespread and dangerous.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).