Terroir 2014 banner
IVES 9 IVES Conference Series 9 Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Abstract

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides. Among possible solutions the use of elicitors that could be included in integrated pest management or biocontrol strategies might be very promising. These bioactive compounds are able to trigger plant defences, leading to induced resistance (IR) against pathogens. Despite IR can be elicited very successfully in controlled environments; it is in most cases not effective enough in practically controlling disease in the vineyard.

To obtain a comprehensive understanding of IR and to identify molecular markers enabling the identification of factors (physiological, environmental…) that can impact IR efficacy in the vineyard we performed a transcriptomic analysis under controlled conditions. The results indicated that among highly up-regulated genes associated to IR, one was annotated as terpene synthase, suggesting that terpenes could be emitted following elicitor treatment. This prompted us to investigate whether IR elicitors actually induce the production of volatile organic compounds (VOCs). Applying online analysis (PTR-QMS) of VOC emissions in dynamic cuvettes and passive sampling in gas tight bags with solid phase micro extraction (SPME / GC-MS), we followed the emission of VOCs of vines in response to elicitor-IR against downy mildew under controlled greenhouse conditions.

The results obtained point out some of them as potential markers of elicitor-IR (as trans a-farnesene) whereas MeSA is rather a marker of downy mildew infection.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Marielle Adrian (1), Malik Chalal (1), Barbro Winkler (2), Karine Gourrat (3), Jörg Schnitzler (2), Xavier Daire (4)

(1) Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 
(2) Research Unit EUS, Helmholtz Zentrum München, Germany 
(3) ChemoSens, INRA Dijon, France 
(4) Inra, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 

Contact the author

Keywords

grapevine, elicitor, induced resistance, downy mildew, VOCs

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Influence of canopy management on yield, grape and wine quality. Relationship between the potassium content and pH in must and wine of the cultivar “Tempranillo”

In recent years red wines are being produced in Andalusia from indigenous and foreign grape varieties, one of which is the Spanish variety Tempranillo.

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters.

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Potential use of the yeast Starmerella bacillaris as a sustainable biocontrol agent against gray mold disease in viticulture

Pest biocontrol strategies are gaining attention as eco-friendly alternatives to the use of synthetic pesticides, including in viticulture.