Terroir 2014 banner
IVES 9 IVES Conference Series 9 Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Abstract

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides. Among possible solutions the use of elicitors that could be included in integrated pest management or biocontrol strategies might be very promising. These bioactive compounds are able to trigger plant defences, leading to induced resistance (IR) against pathogens. Despite IR can be elicited very successfully in controlled environments; it is in most cases not effective enough in practically controlling disease in the vineyard.

To obtain a comprehensive understanding of IR and to identify molecular markers enabling the identification of factors (physiological, environmental…) that can impact IR efficacy in the vineyard we performed a transcriptomic analysis under controlled conditions. The results indicated that among highly up-regulated genes associated to IR, one was annotated as terpene synthase, suggesting that terpenes could be emitted following elicitor treatment. This prompted us to investigate whether IR elicitors actually induce the production of volatile organic compounds (VOCs). Applying online analysis (PTR-QMS) of VOC emissions in dynamic cuvettes and passive sampling in gas tight bags with solid phase micro extraction (SPME / GC-MS), we followed the emission of VOCs of vines in response to elicitor-IR against downy mildew under controlled greenhouse conditions.

The results obtained point out some of them as potential markers of elicitor-IR (as trans a-farnesene) whereas MeSA is rather a marker of downy mildew infection.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Marielle Adrian (1), Malik Chalal (1), Barbro Winkler (2), Karine Gourrat (3), Jörg Schnitzler (2), Xavier Daire (4)

(1) Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 
(2) Research Unit EUS, Helmholtz Zentrum München, Germany 
(3) ChemoSens, INRA Dijon, France 
(4) Inra, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 

Contact the author

Keywords

grapevine, elicitor, induced resistance, downy mildew, VOCs

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

New plant protein extracts as fining agents for red wines

AIM: Quinoa (Chenopodium quinoa) is a non-allergenic pseudocereal with a high protein content

Key odorants of french syrah wines from the northern rhone valley

Little research has been undertaken to investigate the main contributors to the aroma of Syrah wines from the cool northern part of the Rhone valley despite the historical importance of this cultivar for this wine region. The aim of the present work was to study the key odorants of Crozes-Hermitage wines made

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.