Terroir 2014 banner
IVES 9 IVES Conference Series 9 Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Volatile organic compounds: a role in elicitor-induced resistance of grapevine against pathogens?

Abstract

As Vitis vinifera varieties are susceptible to fungal diseases, numerous chemical treatments are generally required to ensure the quantity and quality of the harvest. However, in the context of sustainable viticulture, there are increasing societal request, political incitation, and winegrowers’ awareness to reduce the use of pesticides. Among possible solutions the use of elicitors that could be included in integrated pest management or biocontrol strategies might be very promising. These bioactive compounds are able to trigger plant defences, leading to induced resistance (IR) against pathogens. Despite IR can be elicited very successfully in controlled environments; it is in most cases not effective enough in practically controlling disease in the vineyard.

To obtain a comprehensive understanding of IR and to identify molecular markers enabling the identification of factors (physiological, environmental…) that can impact IR efficacy in the vineyard we performed a transcriptomic analysis under controlled conditions. The results indicated that among highly up-regulated genes associated to IR, one was annotated as terpene synthase, suggesting that terpenes could be emitted following elicitor treatment. This prompted us to investigate whether IR elicitors actually induce the production of volatile organic compounds (VOCs). Applying online analysis (PTR-QMS) of VOC emissions in dynamic cuvettes and passive sampling in gas tight bags with solid phase micro extraction (SPME / GC-MS), we followed the emission of VOCs of vines in response to elicitor-IR against downy mildew under controlled greenhouse conditions.

The results obtained point out some of them as potential markers of elicitor-IR (as trans a-farnesene) whereas MeSA is rather a marker of downy mildew infection.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Marielle Adrian (1), Malik Chalal (1), Barbro Winkler (2), Karine Gourrat (3), Jörg Schnitzler (2), Xavier Daire (4)

(1) Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 
(2) Research Unit EUS, Helmholtz Zentrum München, Germany 
(3) ChemoSens, INRA Dijon, France 
(4) Inra, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle IPM – ERL CNRS 6300, Dijon, France 

Contact the author

Keywords

grapevine, elicitor, induced resistance, downy mildew, VOCs

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Climatic zoning of the Ibero-American viticultural regions

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.