GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Abstract

Context and purpose of the study: Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures, with a more pronounced effect on night temperatures. In Australia, very warm monthly minimum temperatures (two standard deviations higher than the historical average) increased from a 2% to 11 % frequency of occurrence, and very cool monthly night temperatures have declined by about a third (Barlow and Daly, 2017). Night time temperatures are known to influence transcriptomic responses in ripening grapes (Rienth et al., 2014), however, the effect on grape chemical composition, in particular on the aroma compounds, remains to be elucidated. Aroma compounds such as the terpenes and norisoprenoids are key to the quality of white wine varieties such as Riesling. Understanding both the synthesis and loss of these desirable compounds due to the effects of warmer night temperatures, is critical to understanding the need for implementation of suitable mitigation strategies to help cope with the effects of warming projected in the future.

Materials and Methods: Four sites in the Canberra wine region (Australian Capital Territory and New South Wales, Australia) were chosen based on climatic data and, historic cool night index. As such, sites were catalogued as having either warmer, cooler or intermediate temperature nights. Temperature, humidity and light sensors were installed from the véraison stage to monitor meso‐ and microclimatic parameters throughout the ripening period. Berries were collected every two weeks from véraison until commercial harvest for chemical analysis. Midday stem water potential was also measured at sampling to assess water stress levels. Chemical analyses included total soluble sugars, titratable acidity, pH, yeast assimilable nitrogen, carotenoids, and free and bound volatile compounds.

Results: Higher temperature summations significantly depressed the synthesis of important aroma compounds such as norisoprenoids and terpenes, with carotenoid concentrations also being significantly decreased. Conversely, the concentration of aldehydes such as E-2‐octenal and E-2‐nonanal were positively correlated with higher temperature summation throughout the overall ripening season. Night temperature appeared to have a more pronounced effect, particularly on the synthesis of terpenes, during the later stages of berry development, as previously observed by Rienth et al. (2014). At harvest, warmer night temperatures resulted in lower concentrations of terpenes (e.g. linalool and α‐ terpineol) and the C6 alcohols (e.g. 1‐hexanol) whilst a direct correlation to heat summation was less significant. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Joanna M. GAMBETTA1, John BLACKMAN1, Andrew HALL2, Leigh M. SCHMIDTKE1, Bruno HOLZAPFEL1,3

(1) National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2560, Australia
(2) Institute for Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia
(3) New South Wales Department of Primary Industries, Wagga Wagga, Australia

Contact the author

Keywords

 Riesling, climate, night temperature, chemical composition, volatiles, carotenoids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.