Terroir 2014 banner
IVES 9 IVES Conference Series 9 Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

Abstract

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012). 

Different canopy architectures determined differences in canopy density and bunch microclimate. Point quadrat analysis (PQA), photosynthetically active radiation (PAR) in the fruiting zone and berry temperature measurements were performed to evaluate the differences between the two training systems. The different leaf layer number (LLN) between the two trellis determined a different PAR reaching the bunch that resulted in a different berry temperature. Pergola showed a higher LLN and a consequent lower berry temperature compared with Guyot trellis. 

The ThS of Pergola always showed a thinner skin compared with the Guyot. Tartaric acid content was significantly affected by the training system and resulted higher in the Pergola trellis. The ANT was higher where maximum berry temperature was lower, i. e. in intracanopy bunch of Pergola. Ew and TSS content were not affected by both the position in the canopy and the training system; just a year effect was founded. This study highlight the effect of the training system on some important grape parameters in a context of climate change, also for the post-harvest dehydration process of Corvina.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Fabrizio BATTISTA (1), Despoina PETOUMENOU (1), Federica GAIOTTI (1), Lorenzo LOVAT (1), Duilio PORRO (2), Diego TOMASI (1)

(1) Centro di Ricerca per la Viticoltura, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Viale 28 Aprile 26, Conegliano (TV), Italy 
(2) Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, via Mach 1, S.Michele a/A (TN), Italy

Contact the author

Keywords

training system, Pergola, post-harvest dehydration, epicuticular wax, skin thickness, Corvina

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

El viñedo en Lanzarote y el Archipiélago Canario

La isla de Lanzarote, primera en ser ocupada en los albores del siglo XV, es la única del archipiélago, junto con Fuerteventura, que no produjo vino. Ocasionalmente hubo algún parral para el consumo

Application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines: biological acidification, prise de mousse, aroma profile. Two cases of study

In this video recording of the IVES science meeting 2025, Raffaele Guzzon (Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, San Michele all’Adige (TN), Italy) speaks about the application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines (biological acidification, prise de mousse, aroma profile). This presentation is based on an original article accessible for free on OENO One.

Automated red microvinification (1kg) adapted to the needs of varietal innovation

The creation of disease-resistant varieties adapted to climate change is a key challenge for the future of the wine industry. At present, the selection of these new varieties is essentially based on screening for genetic markers of resistance and agronomic criteria, due to the small number of vines available per genotype. Integrating screening for oenological criteria into the early stages of selection would speed up this process.

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.