Terroir 2014 banner
IVES 9 IVES Conference Series 9 Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

Abstract

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012). 

Different canopy architectures determined differences in canopy density and bunch microclimate. Point quadrat analysis (PQA), photosynthetically active radiation (PAR) in the fruiting zone and berry temperature measurements were performed to evaluate the differences between the two training systems. The different leaf layer number (LLN) between the two trellis determined a different PAR reaching the bunch that resulted in a different berry temperature. Pergola showed a higher LLN and a consequent lower berry temperature compared with Guyot trellis. 

The ThS of Pergola always showed a thinner skin compared with the Guyot. Tartaric acid content was significantly affected by the training system and resulted higher in the Pergola trellis. The ANT was higher where maximum berry temperature was lower, i. e. in intracanopy bunch of Pergola. Ew and TSS content were not affected by both the position in the canopy and the training system; just a year effect was founded. This study highlight the effect of the training system on some important grape parameters in a context of climate change, also for the post-harvest dehydration process of Corvina.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Fabrizio BATTISTA (1), Despoina PETOUMENOU (1), Federica GAIOTTI (1), Lorenzo LOVAT (1), Duilio PORRO (2), Diego TOMASI (1)

(1) Centro di Ricerca per la Viticoltura, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Viale 28 Aprile 26, Conegliano (TV), Italy 
(2) Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, via Mach 1, S.Michele a/A (TN), Italy

Contact the author

Keywords

training system, Pergola, post-harvest dehydration, epicuticular wax, skin thickness, Corvina

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines.

Unconventional methods to delve deeper into the influence of temperature and nutrition on Chardonnay wine profiles

Temperature and yeast nutrition profoundly impact wine quality and sensory attributes by modulating yeast aroma production and release during fermentation. While temperature and nitrogen’s individual effects are well-studied, their combined influence, including nutrient type and addition timing, remains underexplored. hence, this study aimed to investigate the simultaneous effects of these factors on fermentation kinetics, aroma production and sensory profile, particularly in a Chardonnay wine production selected as a quite aromatically neutral base.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.