Terroir 2014 banner
IVES 9 IVES Conference Series 9 The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

Abstract

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH). 

To study the effect of nitrogen on these target metabolites, an experiment on Sauvignon blanc vines was performed in Bordeaux and Sancerre areas (France). Four nitrogen treatments were applied: control, soil application of 50kg N/ha, soil application of 100kg N/ha and foliar application of 15kg N/ha. Secondary metabolites were measured in grape berries and in wines produced through small scale vinifications. 

Yeast Assimilable Nitrogen and N-tester measurements showed a significant difference in vine nitrogen status among the four treatments. The analysis of volatile compounds showed an increase in the content of 3-sulfanylhexan-1-ol precursors (P-3SH) and GSH in berries from vines with high N status. Similar effect of nitrogen was observed on the concentration of 3SH and GSH in wine. 

This study will allow better management of vine nitrogen status in vineyards allowing a quantitative and qualitative control of grape berries.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Pierre Helwi (1), (3), Sabine Guillaumie (1), Cécile Thibon (2), Philippe Darriet (2), Cornelis van Leeuwen (1), (3) 

(1) Univ. Bordeaux, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 
(2) Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA4577, USC1366, INRA, 33882 Villenave d’Ornon France 
(3) Bordeaux Sciences Agro, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 

Contact the author

Keywords

terroir, nitrogen, Sauvignon blanc, berry, wine, volatile thiols, methoxypyrazines, glutathione

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile

Use of cyclodextrins to improve grape must fermentability thanks to their sequestering effect on medium-chain fatty acids

Cyclodextrins are complex cyclic oligosaccharides of glucose units. They are produced from the breakdown of starch by the enzymatic reaction of glucosyltransferase. The result is a ring-shaped molecule with a cavity with a hydrophilic outer part and a hydrophobic inner part. As a consequence of this cavity, cyclodextrin is able to form complexes with non-polar organic molecules [1,2].

Spiders in vineyards show varying effects of inter-row management and the surrounding landscape

In vineyards, management and the surrounding landscape can have different effects on spiders. In temperate regions management (organic vs. conventional) may have less strong effects than for other crops.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.