Terroir 2014 banner
IVES 9 IVES Conference Series 9 The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

Abstract

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH). 

To study the effect of nitrogen on these target metabolites, an experiment on Sauvignon blanc vines was performed in Bordeaux and Sancerre areas (France). Four nitrogen treatments were applied: control, soil application of 50kg N/ha, soil application of 100kg N/ha and foliar application of 15kg N/ha. Secondary metabolites were measured in grape berries and in wines produced through small scale vinifications. 

Yeast Assimilable Nitrogen and N-tester measurements showed a significant difference in vine nitrogen status among the four treatments. The analysis of volatile compounds showed an increase in the content of 3-sulfanylhexan-1-ol precursors (P-3SH) and GSH in berries from vines with high N status. Similar effect of nitrogen was observed on the concentration of 3SH and GSH in wine. 

This study will allow better management of vine nitrogen status in vineyards allowing a quantitative and qualitative control of grape berries.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Pierre Helwi (1), (3), Sabine Guillaumie (1), Cécile Thibon (2), Philippe Darriet (2), Cornelis van Leeuwen (1), (3) 

(1) Univ. Bordeaux, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 
(2) Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA4577, USC1366, INRA, 33882 Villenave d’Ornon France 
(3) Bordeaux Sciences Agro, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 

Contact the author

Keywords

terroir, nitrogen, Sauvignon blanc, berry, wine, volatile thiols, methoxypyrazines, glutathione

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

The effect of different irrigation regimes on the indigenous Cypriot grape variety Xynisteri and comparison to Sauvignon blanc

Aims: The aims of this study were to (1) assess the response of the indigenous Cypriot variety Xynisteri to different irrigation regimes and (2) compare the performance of Xynisteri to Sauvignon Blanc grown in pots with different irrigation regimes.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.