Terroir 2014 banner
IVES 9 IVES Conference Series 9 The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

Abstract

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH). 

To study the effect of nitrogen on these target metabolites, an experiment on Sauvignon blanc vines was performed in Bordeaux and Sancerre areas (France). Four nitrogen treatments were applied: control, soil application of 50kg N/ha, soil application of 100kg N/ha and foliar application of 15kg N/ha. Secondary metabolites were measured in grape berries and in wines produced through small scale vinifications. 

Yeast Assimilable Nitrogen and N-tester measurements showed a significant difference in vine nitrogen status among the four treatments. The analysis of volatile compounds showed an increase in the content of 3-sulfanylhexan-1-ol precursors (P-3SH) and GSH in berries from vines with high N status. Similar effect of nitrogen was observed on the concentration of 3SH and GSH in wine. 

This study will allow better management of vine nitrogen status in vineyards allowing a quantitative and qualitative control of grape berries.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Pierre Helwi (1), (3), Sabine Guillaumie (1), Cécile Thibon (2), Philippe Darriet (2), Cornelis van Leeuwen (1), (3) 

(1) Univ. Bordeaux, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 
(2) Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA4577, USC1366, INRA, 33882 Villenave d’Ornon France 
(3) Bordeaux Sciences Agro, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 

Contact the author

Keywords

terroir, nitrogen, Sauvignon blanc, berry, wine, volatile thiols, methoxypyrazines, glutathione

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

L’essor des produits “No-Low” : nouveaux défis pour l’étiquetage et la réglementation

In recent years, “no-low” products seem to become a new worldwide trend. It appears to be a possible answer to the well-known context of climate change, the decline in wine consumption, and the wellness/health trend (“free from” claims, vegan, and so on…) That consumers are looking for. The aim of this study is to provide an overview of the “no-low” products sold in the french market (but not only french products), focusing on the labelling, packaging, and sales presentation of these products.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.