Terroir 2014 banner
IVES 9 IVES Conference Series 9 The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

Abstract

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH). 

To study the effect of nitrogen on these target metabolites, an experiment on Sauvignon blanc vines was performed in Bordeaux and Sancerre areas (France). Four nitrogen treatments were applied: control, soil application of 50kg N/ha, soil application of 100kg N/ha and foliar application of 15kg N/ha. Secondary metabolites were measured in grape berries and in wines produced through small scale vinifications. 

Yeast Assimilable Nitrogen and N-tester measurements showed a significant difference in vine nitrogen status among the four treatments. The analysis of volatile compounds showed an increase in the content of 3-sulfanylhexan-1-ol precursors (P-3SH) and GSH in berries from vines with high N status. Similar effect of nitrogen was observed on the concentration of 3SH and GSH in wine. 

This study will allow better management of vine nitrogen status in vineyards allowing a quantitative and qualitative control of grape berries.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Pierre Helwi (1), (3), Sabine Guillaumie (1), Cécile Thibon (2), Philippe Darriet (2), Cornelis van Leeuwen (1), (3) 

(1) Univ. Bordeaux, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 
(2) Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA4577, USC1366, INRA, 33882 Villenave d’Ornon France 
(3) Bordeaux Sciences Agro, ISVV, UMR 1287 EGFV, INRA, 33882 Villenave d’Ornon France 

Contact the author

Keywords

terroir, nitrogen, Sauvignon blanc, berry, wine, volatile thiols, methoxypyrazines, glutathione

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

The sensory profile of astringency: application on Sangiovese wines

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines.

Unravelling the microbial community structure and aroma profile of Agiorgitiko wine under different inoculation schemes

Agiorgitiko (Vitis vinifera L. cv.) is the most widely cultivated indigenous red grape variety in Greece, known for the production of Protected Designation of Origin Nemea wines.

Valorisation of nutraceutical and health-related properties of wine-grapes of Emilia-Romagna Italian region

In this work, results about the composition in polyphenols and polyamines in important wine-grape cultivars from the Emilia-Romagna region are presented. Spectrophotometric and HPLC analyses suggest that especially coloured berries are particularly rich of antioxidant species (stilbenes and catechins). Potential allergenic capability of biogenic amines was also characterized.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).