IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Abstract

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%. The grapes were sampled at the beginning, at half time, and at the end of withering. For each sampling point, weight loss rate, skins mechanical properties (i.e. hardness and thickness), must technological parameters, and skins and seeds extractable polyphenols, flavonoids, anthocyanins, and condensed tannins were studied. At the end of withering, the berry weight loss resulted very different among the systems, ranging from 18.79 to 12.73%. HC showed the fastest weight loss, followed by MF, CT, and RM. Interestingly, the dehydration kinetics showed different trends over the process: for HC the rate of weight loss (WLR, %/day) resulted higher in the first half of the process and then decreased; on the contrary, the kinetics of CT and MF were slower at the beginning of withering compared with the second phase; for RM, instead, the WLR remained fairly constant throughout the entire period.These differences yielded different consequences on the complex balance between concentration-synthesis and loss of compounds during withering. HC led to a significantly higher sugar content than the others after two months of withering. Instead, no significant differences were found among the systems for total acidity, pH, acetic acid, and glycerol (markers of microbial development), and mechanical properties. As regards phenolics, RM led to a significant reduction in skin extractable polyphenols and flavonoids when expressed as mg/kg berries, possibly because the lower concentration effect did not exceed the greater loss of these compounds compared to the other placements. No significant differences were found among systems in seeds polyphenols.In conclusion, under the same environmental conditions bunch placement influenced weight loss, dehydration kinetics, skins polyphenols, and to a lesser extent also the sugar content. The best compromise between weight loss and grape features seems to be the use of plastic crates, whereas hanged clusters placement allowed to achieve the same weight loss faster, although resulting in a higher sugar content. Therefore, these results can provide knowledge to choose the withering system with awareness according to the established oenological objective.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Scalzini Giulia1, Giacosa Simone1, Paissoni Maria Alessandra1, Río Segade Susana1, Rolle Luca1 and Gerbi Vincenzo1

1University of Turin, Department of Agricultural, Forest and Food Sciences

Contact the author

Keywords

bunch placement, grape dehydration, weight loss rate, physico-chemical parameters, special wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Architecture, microclimate, vine regulation, grape berry and wine quality: how to choose the training system according to the wine type ?

This synthetic presentation deals with :
• A description of the variability and the main models of grapevine canopy architecture in the world.
• A precision on the model « potential exposed leaf area SFEp », which estimates the potential of net carbon balance of the plant, and shows a regulating effect of high SFEp levels on production decrease.

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Climate change is modifying environmental conditions in all wine-growing areas of the
world.