Terroir 2014 banner
IVES 9 IVES Conference Series 9 Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Abstract

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages. 

This syndrome is characterized both by foliar symptoms of variable intensity and internal symptoms in the grapevine wood. These necroses induce vascular disorders on vine trunk. Most survey networks or other monitorings of plot generally show that the levels of leaf symptom expression of esca may depend on the cultivar and the soil x climate under which this crop is grown. It has been also shown that soil has a major effect on water status of grapevine. And the interface between ground and vine is provided by the rootstock. The study presents the results of an experiment carried out in a plot of Cabernet-Sauvignon in the Bordeaux region with twelve repeats of four different rootstocks over four vintages. Data suggest that one of the four rootstocks tested significantly led to less foliar symptoms of esca under these conditions. Among the three other rootstocks, there were some differences that could be reversed depending on weather conditions of the year. 

This breakthrough could be considered as an extra-element to add to all the criteria required for choosing a rootstock.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

JP Roby (1), S Mary (3), P Lecomte (2), and C Laveau (3)

(1) Univ. Bordeaux, ISVV, Bordeaux Sciences Agro, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France 
(2) INRA, UMR1065 SAVE, Univ. Bordeaux, ISVV, BP 81, 33883 Villenave d’Ornon Cedex, France 
(3) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 

Contact the author

Keywords

esca, rootstock, soil effect, weather effect

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Cartographie des terroirs viticoles: valorisation des résultats par un logiciel de consultation dynamique de cartes

Pour son travail de cartographie et de caractérisation des terroirs, la Cellule Terroirs Viticoles utilise la méthode développée par l’Unité Vigne et Vin du Centre INRA d’Angers. Cette méthode reconnue au niveau international est appliquée dans les vignobles du Val de Loire à l’échelle du 1/10 000e et est valorisée par des éditions d’Atlas Viticoles à destination des viticulteurs et des organismes techniques.

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.