Terroir 2014 banner
IVES 9 IVES Conference Series 9 Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Abstract

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages. 

This syndrome is characterized both by foliar symptoms of variable intensity and internal symptoms in the grapevine wood. These necroses induce vascular disorders on vine trunk. Most survey networks or other monitorings of plot generally show that the levels of leaf symptom expression of esca may depend on the cultivar and the soil x climate under which this crop is grown. It has been also shown that soil has a major effect on water status of grapevine. And the interface between ground and vine is provided by the rootstock. The study presents the results of an experiment carried out in a plot of Cabernet-Sauvignon in the Bordeaux region with twelve repeats of four different rootstocks over four vintages. Data suggest that one of the four rootstocks tested significantly led to less foliar symptoms of esca under these conditions. Among the three other rootstocks, there were some differences that could be reversed depending on weather conditions of the year. 

This breakthrough could be considered as an extra-element to add to all the criteria required for choosing a rootstock.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

JP Roby (1), S Mary (3), P Lecomte (2), and C Laveau (3)

(1) Univ. Bordeaux, ISVV, Bordeaux Sciences Agro, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France 
(2) INRA, UMR1065 SAVE, Univ. Bordeaux, ISVV, BP 81, 33883 Villenave d’Ornon Cedex, France 
(3) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 

Contact the author

Keywords

esca, rootstock, soil effect, weather effect

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Evaluation of the efficiency of dialysis membranes in the wine dealcoholization process

The global wine production is continuously evolving to meet the new demands and preferences of consumers. in this evolving scenario, it’s important to determine which trends will be short-lived and which will remain over time. The promotion of healthier habits has encouraged consumers to try to find alternatives with low or no alcohol content. The challenge for the industry is to produce an alcohol-free wine that retains the familiar aromas and mouthfeel of traditional wine but without alcohol. Ethanol is the most abundant compound in wine, excluding water.

An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

Rotundone is the main aroma compound responsible for peppery notes in red wine. This positive and very potent molecule has an odor threshold of 8 ng/L in water and 16 ng/L in red wine. It has been detected in several grape varieties with some of the highest concentrations recorded in Syrah, Duras, Tardif and Noiret, an interspecific hybrid grown in the North-East of the USA. If several winemaking practices have been identified to lower rotundone in wine, up to date, no enological solution has proved its efficiency to maximize it. This means that efforts to produce high rotundone wines must be undertaken in vineyards. This work provides practical ways that can be used by winegrowers to modulate rotundone levels in their wines.

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest.

Genetic causes of SO2 consumption in Saccharomyces cerevisiae

SO2 is used during winemaking for its anti-oxidative and anti-microbial properties. A high SO2 concentration in the wine has negative impacts by hiding wine aromas and delaying malolactic fermentation.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.