Terroir 2014 banner
IVES 9 IVES Conference Series 9 Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Abstract

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages. 

This syndrome is characterized both by foliar symptoms of variable intensity and internal symptoms in the grapevine wood. These necroses induce vascular disorders on vine trunk. Most survey networks or other monitorings of plot generally show that the levels of leaf symptom expression of esca may depend on the cultivar and the soil x climate under which this crop is grown. It has been also shown that soil has a major effect on water status of grapevine. And the interface between ground and vine is provided by the rootstock. The study presents the results of an experiment carried out in a plot of Cabernet-Sauvignon in the Bordeaux region with twelve repeats of four different rootstocks over four vintages. Data suggest that one of the four rootstocks tested significantly led to less foliar symptoms of esca under these conditions. Among the three other rootstocks, there were some differences that could be reversed depending on weather conditions of the year. 

This breakthrough could be considered as an extra-element to add to all the criteria required for choosing a rootstock.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

JP Roby (1), S Mary (3), P Lecomte (2), and C Laveau (3)

(1) Univ. Bordeaux, ISVV, Bordeaux Sciences Agro, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France 
(2) INRA, UMR1065 SAVE, Univ. Bordeaux, ISVV, BP 81, 33883 Villenave d’Ornon Cedex, France 
(3) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 

Contact the author

Keywords

esca, rootstock, soil effect, weather effect

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Estudio comparativo del potencial enológico de dos varietales tintos cultivados en la isla de Tenerife

En el presente trabajo se ha realizado un estudio comparativo entre los varietales tintos Listán negro y Negramolle en la Denominación de Origen Tacoronte-Acentejo. Se han determinado durante dos años

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).