Terroir 2014 banner
IVES 9 IVES Conference Series 9 Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Abstract

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages. 

This syndrome is characterized both by foliar symptoms of variable intensity and internal symptoms in the grapevine wood. These necroses induce vascular disorders on vine trunk. Most survey networks or other monitorings of plot generally show that the levels of leaf symptom expression of esca may depend on the cultivar and the soil x climate under which this crop is grown. It has been also shown that soil has a major effect on water status of grapevine. And the interface between ground and vine is provided by the rootstock. The study presents the results of an experiment carried out in a plot of Cabernet-Sauvignon in the Bordeaux region with twelve repeats of four different rootstocks over four vintages. Data suggest that one of the four rootstocks tested significantly led to less foliar symptoms of esca under these conditions. Among the three other rootstocks, there were some differences that could be reversed depending on weather conditions of the year. 

This breakthrough could be considered as an extra-element to add to all the criteria required for choosing a rootstock.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

JP Roby (1), S Mary (3), P Lecomte (2), and C Laveau (3)

(1) Univ. Bordeaux, ISVV, Bordeaux Sciences Agro, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France 
(2) INRA, UMR1065 SAVE, Univ. Bordeaux, ISVV, BP 81, 33883 Villenave d’Ornon Cedex, France 
(3) Univ. Bordeaux, Vitinnov, ISVV, 1 cours du Général De Gaulle, 33170 Gradignan, France 

Contact the author

Keywords

esca, rootstock, soil effect, weather effect

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Exploring magnesium defficiency in Welschriesling grapevines: A multi-omics approach to address viticultural challenges

Magnesium (Mg) deficiency poses a significant challenge to viticulture, particularly affecting Welschriesling (WR), a key grape variety in Austrian and Central European vineyards.

Preplant fumigation only temporarily reduces Northern root-knot nematode

Management of plant-parasitic nematodes is typically focused on preplant fumigation, especially in a vineyard replant scenario. While the data are clear that this practice reduces nematodes immediately after application, which is useful in annually-cropped systems, does it have staying power in perennial cropping systems? The northern root-knot nematode Meloidogyne hapla reduces the overall lifespan and productivity of vineyards, but it does so over a long time period (slow, chronic decline). In two different commercial own-rooted V. vinifera vineyards, both undergoing vineyard replanting, we explored whether preplant fumigation reduced M. hapla densities in soils immediately after application. At one of these locations, we have explored the long-term effect of fumigation by monitoring the site for seven years post fumigation.