terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Abstract

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine. This study examines the differences in the analytical parameters of the main membrane and thermal methods currently employed to remove ethanol from wine and produce dealcoholized wine [1-7]. A total of 600 litres of Spanish white wine from the 2023 vintage served as the base. The wine was dealcoholized using leading thermal methods—vacuum distillation, Spinning Cone Column, and traditional distillation. Additionally, it underwent dealcoholization using key membrane techniques, such as osmotic distillation and dialysis, in combination with other methods: reverse osmosis followed by osmotic distillation of the permeate, reverse osmosis paired with dialysis, and reverse osmosis alone to produce an alcohol-free base by adding demineralized water to the retentate before applying dialysis. Each approach was replicated three times to ensure consistency in results. The batches were stabilized post-process with sulphur dioxide and Nagardo®, a natural preservative, before bottling. After one month of storage in bottles, each sample was analysed: colour parameters were measured with a spectrophotometer [8], key minerals were determined using, basic wine parameters assessed via FTIR [9], redox (mV) with ORP sensor, further parameters like total phenols was determinate by Folin-Ciocalteu reagent and spectrophotometer, and acetaldehyde are determined through UV-enzymatic method.

The findings demonstrated distinct variations in key analytical parameters across the different dealcoholization techniques. Membrane-based methods, particularly reverse osmosis combined with osmotic distillation, exhibited superior retention of essential compounds and colour stability compared to thermal processes. In contrast, thermal techniques, such as vacuum distillation and traditional distillation, resulted in significant colour degradation. Advanced analyses using atomic absorption spectrometry, FTIR, and NMR highlighted changes in mineral content and structural components of the wine matrix, underscoring the critical impact of the chosen dealcoholization process on wine quality. Further, the results obtained are extensively discussed in the presentation.

References

[1] Belisario-Sánchez, Y. Y., Taboada-Rodríguez, A., Marín-Iniesta, F., & López-Gómez, A. (2009). Journal of Agricultural and Food Chemistry, 57, 6770.
[2] Saha, B., Torley, P. J., Blackman, J. W., & Schmidtke, L. M. (2013). Vigne et Vin Publications Internationales.
[3] Calvo, J. I., Asensio, J., Sainz, D., Zapatero, R., Carracedo, D., Fernández-Fernández, E., Prádanos, P., Palacio, L., & Hernández, A. (2022). Membranes, 12.
[4] Catarino, M., & Mendes, A. (2011). Innovative Food Science & Emerging Technologies, 12, 330.
[5] Catarino, M., Mendes, A., Madeira, L., & Ferreira, A. (2007). Separation Science and Technology, 42, 3011.
[6] Pilipovik, M. V., & Riverol, C. (2005). Journal of Food Engineering, 69, 437.
[7] Sam, F. E., Ma, T.-Z., Salifu, R., Wang, J., Jiang, Y.-M., Zhang, B., & Han, S.-Y. (2021). Foods (Basel, Switzerland), 10.
[8] Salinas, F., Christmann, M., & Freund, M. (2023). BIO Web Conf., 56.
[9] Schmitt, M., Patz, C., Rheinberger, A., Giehl, A., Freund, M., Christmann, M., & Wolf, C. (2023). Analytical examination of dealcoholized wines. BIO Web of Conferences, 68, 02006.

Publication date: June 5, 2025

Type: Oral communication

Authors

Lorenzo Italiano1,*, Yogesh Kumar2, Matthias Schmitt1, Christmann Monika1

¹ Institut of Oenologie, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
2 Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521, Cesena, FC, Italy

Contact the author*

Keywords

dealcoholized wine, dealcoholization, chemical parameters, thermo and membrane technologies

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].