terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 HPLC-based quantification of elemental sulfur in grape juice

HPLC-based quantification of elemental sulfur in grape juice

Abstract

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important. For example, it is thought that sulfur residues can contribute to the formation of undesirable volatile sulfur compounds (VSCs) such as hydrogen sulfide (H2S), and methanethiol (MeSH), which negatively affect wine quality.2,3 Existing analytical methods to measure elemental sulfur in grape and wine samples are laborious and often require large volumes of samples. This study has developed a straightforward HPLC-DAD method for measuring elemental sulfur following a small-scale solvent-based extraction process. The method was subsequently employed in a study investigating the impact of residual elemental sulfur in grape juice, under low and high nitrogen conditions, on the formation of VSCs during fermentation and ageing.

References

[1] Thomas, C. S.; Boulton, R. B.; Silacci, M. W.; Gubler, W. D. The Effect of Elemental Sulfur, Yeast Strain, and Fermentation Medium on Hydrogen Sulfide Production During Fermentation. Am. J. Enol. Vitic. 1993, 44 (2), 211.

[2]Rankine, B. C. Nature, Origin and Prevention of Hydrogen Sulphide Aroma in Wines. Journal of the Science of Food and Agriculture 1963, 14 (2), 79–91. https://doi.org/10.1002/jsfa.2740140204.

[3] Jastrzembski, J. A.; Allison, R. B.; Friedberg, E.; Sacks, G. L. Role of Elemental Sulfur in Forming Latent Precursors of H2S in Wine. J. Agric. Food Chem. 2017, 65 (48), 10542–10549. https://doi.org/10.1021/acs.jafc.7b04015.

Publication date: June 5, 2025

Type: Oral communication

Authors

Sukhpreet Gill1,*, Rebecca C. Deed1,2, Tanya Rutan3, Ngarita Warden3, Rebecca E. Jelley1, Bruno Fedrizzi1

1 School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand
2 School of Biological Sciences, University of Auckland, 5 Symonds St, Auckland, New Zealand
3 Bragato Research Institute, 85 Budge St, Blenheim, New Zealand

Contact the author*

Keywords

elemental sulfur, HPLC, grape juice, acetone extraction

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose.

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]

How can yeast modulate Divona’s aromatic profile?

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].