Terroir 2014 banner
IVES 9 IVES Conference Series 9 Polyphenol content examination of Tokaji Aszú wines

Polyphenol content examination of Tokaji Aszú wines

Abstract

 There are two important conditions which determine the nascency of particular Tokaj wines comulatively: 

  • distinctive savour and fragance called the „aszú” taste and caused by Botritis c.
  • Tokaj nature which come from the barrel and other special aging methods 

We must state that two conditions above are only prevalent in the case when the processed grapes are full or over ripened, besides following the Tokaj wines preparation criterions (grape variety, soil, microclimate, vintage, etc.). These two conditions mentioned before were followed up only sensory based analysis up to now, altough the study of chemical idetified compounds which confirms these are obviuos. This study about the investigatation of the polyphenol compounds biological effect, next to definiate the tirosol, one of the simple phenol content from these wines. The grape stem and wine contents are changing during the infection of Botritis c., also the aminoacid content is decreasing. It is therefore assumed that the Tyrosine content derived from amino acids present in lower concentrations in the Tokaji wines. The Tyrosol (p-hydroxyphenyl ethanol) belongs to the simple phenols compounds and generated oxidative decarboxylation of the alcoholic fermentation only. It is oenological significance in sensory value itself, because it have a bitter taste, which could give that bitter flavour over 25 mg/l concentration. 

Also could be detect a significant differences in the simple phenolic and polyphenolic composition from each vintages at same sugar content level. We continue our investigations worthwhile. It is important to determine the polyphenolic compounds due to their positive health effects and simple polyphenols, including the amount of Tyrosol too, which also keep track of the Tokaj wines.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

S.D. Nyitrainé, B. Nagy, M. Kállay 

Corvinus University of Budapest, Institute of Viticulture and Oenology Department of Oenology H-1118 Budapest, Ménesi út 45. 

Contact the author

Keywords

Tokaj, polyphenol, aszú, wines, tyrosol, Botrytis

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.

Key phenolic compounds in the pulp of new red-fleshed table grape hybrids: anthocyanins and flavonols 

The cultivated area of table grapes worldwide has experienced a paramount increase over the last two decades. In this current scenario, traditional varieties are being replaced by new cultivars that prioritize a profitable and sustainable agriculture, while satisfying consumer demands. It is widely recognized that wine varieties, especially those with red berry flesh, are renowned for their high antioxidant capacity and phenolic compounds, which promote health. Recently, this topic has also gained significance in table grape breeding programs.