Terroir 2014 banner
IVES 9 IVES Conference Series 9 Polyphenol content examination of Tokaji Aszú wines

Polyphenol content examination of Tokaji Aszú wines

Abstract

 There are two important conditions which determine the nascency of particular Tokaj wines comulatively: 

  • distinctive savour and fragance called the „aszú” taste and caused by Botritis c.
  • Tokaj nature which come from the barrel and other special aging methods 

We must state that two conditions above are only prevalent in the case when the processed grapes are full or over ripened, besides following the Tokaj wines preparation criterions (grape variety, soil, microclimate, vintage, etc.). These two conditions mentioned before were followed up only sensory based analysis up to now, altough the study of chemical idetified compounds which confirms these are obviuos. This study about the investigatation of the polyphenol compounds biological effect, next to definiate the tirosol, one of the simple phenol content from these wines. The grape stem and wine contents are changing during the infection of Botritis c., also the aminoacid content is decreasing. It is therefore assumed that the Tyrosine content derived from amino acids present in lower concentrations in the Tokaji wines. The Tyrosol (p-hydroxyphenyl ethanol) belongs to the simple phenols compounds and generated oxidative decarboxylation of the alcoholic fermentation only. It is oenological significance in sensory value itself, because it have a bitter taste, which could give that bitter flavour over 25 mg/l concentration. 

Also could be detect a significant differences in the simple phenolic and polyphenolic composition from each vintages at same sugar content level. We continue our investigations worthwhile. It is important to determine the polyphenolic compounds due to their positive health effects and simple polyphenols, including the amount of Tyrosol too, which also keep track of the Tokaj wines.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

S.D. Nyitrainé, B. Nagy, M. Kállay 

Corvinus University of Budapest, Institute of Viticulture and Oenology Department of Oenology H-1118 Budapest, Ménesi út 45. 

Contact the author

Keywords

Tokaj, polyphenol, aszú, wines, tyrosol, Botrytis

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.