terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

Abstract

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1]. Acetaldehyde accumulation continues during the growth phase. Finally, the concentration decreases during the stationary phase until the end of alcoholic fermentation [2], [3], [4]. Accumulation of acetaldehyde differs according to yeast species and strains, ranging from 0.5 for the least productive to more than 700 mg/L for the most productive [5]. At low concentrations, acetaldehyde is a pleasant and fruity aroma while at high levels, its odor becomes irritating and pungent which depreciates the organoleptic qualities of wines for consumers. The primary objective of this study was to describe and understand the evolution of acetaldehyde concentration during wine alcoholic fermentation and to shed light on the impact of temperature, the main parameter that manages fermentation kinetics but also acetaldehyde dynamics synthesis. One recurrent question persisted on the kinetics of acetaldehyde production from biological and/or physical aspects: did the temperature impact on the metabolism of production of the molecule by the yeast or on the contrary, did it favor its evaporation, or did it impact of both mechanisms? Indeed, although contradictory, studies agree to consider the fermentation temperature as a key point of acetaldehyde production: for some authors, the fermentation temperature affects little the final acetaldehyde content, while others correlate the increase in acetaldehyde content with increasing fermentation temperature [6].

In the present work, thanks to new online monitoring approaches and associated mathematical methods for data treatment, complete acetaldehyde production balances during fermentation allow biological consumption to be dissociated from physical evaporation in order to answer many of the questions posed.

First of all, from a biological point of view, high fermentation temperatures lead to an important production of acetaldehyde at the end of the growth phase, but also favor a better consumption of the molecule by the yeast during stationary phase, leading to a low residual acetaldehyde content at the end of the fermentation. Additionally, physical evaporation is even more important at high temperatures due to the boiling point of the molecule, reinforcing the final decrease of the acetaldehyde concentration. On the other hand, thanks to the use of production balance, it was possible to determine that the decrease of acetaldehyde concentration during the stationary phase is mainly due to the yeast consumption than to the physical effect of evaporation. These different observations were further corroborated by the use of anisothermal temperature profiles. Finally, the consumption part being the most important in the decrease of the acetaldehyde concentration during the second part of the process, metabolic links were revealed between acetaldehyde and markers of metabolism such as organic acids.

References

[1] Cheraiti, N., Guezenec, S., Salmon, J.-M. (2010). Appl. Microbiol. Biotechnol. 86, 693–700.

[2] Aguera, E., Sire, Y., Mouret, J.-R., Sablayrolles, J.-M., Farines, V. (2018). J. Agric. Food Chem. 66, 6170–6178.

[3] Jackowetz, J.N., Dierschke, S., Mira de Orduña, R. (2011). Food Res. Int. 44, 310–316.

[4] Ochando, T., Mouret, J.-R., Humbert-Goffard, A., Aguera, E., Sablayrolles, J., Farines, V. (2020). Food Res. Int. 136, 109607.

[5] Liu, S.-Q., Pilone, G.J. (2000). Int. J. Food Sci. 35, 49–61.

[6] Li, E., Mira de Orduña, R. (2017). J. Ind. Microbiol. Biotechnol. 44, 229–236.

Publication date: June 5, 2025

Type: Oral communication

Authors

Charlie Guittin1, Faïza Maçna1, Marc Perez1, Adeline Barreau2, Xavier Poitou2, Jean-Roch Mouret1, Vincent Farines1,*

1 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 R&D department, JAS Hennessy & Co, Cognac, France

Contact the author*

Keywords

acetaldehyde, online monitoring, alcoholic fermentation, production balance

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Exploring typicity in Nebbiolo wines across different areas through chemical analysis

“Nebbiolo” is a red winegrape variety well known to produce monovarietal wines in Piemonte, Valle d’Aosta, and Lombardia regions, taking part to 7 DOCG (Denominazione di Origine Controllata e Garantita) and 22 DOC (Denominazione di Origine Controllata) protected designations of origin (PDO) [1,2].

Evaluation of shelf life of white wines in aluminium bottle: a modelling approach

Aluminum is a particularly interesting material for packaging because it is environmentally sustainable, lighter than standard glass bottles, and protective against light radiation [1].