Terroir 2014 banner
IVES 9 IVES Conference Series 9 From the “climats de Bourgogne” to the terroir in bottles

From the “climats de Bourgogne” to the terroir in bottles

Abstract

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs. On that basis, it could be assumed that, if grapes hold chemical fingerprints from a given terroir in their compositions, wines made of these grapes should also reflect related fingerprints. Very few strategies, based on the metabolodiversity of grape and/or wine, have tried to tackle the concept of Terroir in wine so far. Here, we report on the application of ultra-high resolution mass spectrometry, used as an untargeted approach, to the study of complex biochemical fingerprints of Pinot noir grapes and related wines from different plots (climats) in Burgundy, but grown/made by the same vinegrower/winemaker. Over three successive vintages, samples were mostly discriminated according to vintages. However within a given vintage, terroir-related signatures were more pronounced in grapes than in wines. In contrast, the single-run analysis of the same wines after bottle ageing clearly allowed for a significant separation between closely related vineyards from the Côte de Beaune and the Côte de Nuits, regardless of the vintages. For the first time, such results indicate that non-targeted experiments can reveal memories of environmental factors, which have impacted the wine’s metabolic baggage at the moment of its elaboration, through terroir-related metabolic signatures on a regional-scale that can potentially be as small as the countless “climats” of Burgundy. 

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Chloé Roullier-Gall (1,2), Marianna Lucio (2), Laurence Noret (1), Philippe Schmitt-Koplin (2,3) and Régis D. Gougeon (1) 

(1) Institut Universitaire de la vigne et du vin, Jules Guyot, UMR A 02.102 PAM AgroSupDijon/Université de Bourgogne, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France. 
(2) Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85758 Neuherberg, Germany 
(3) Technische Universität München, Chair of Analytical Food Chemistry, Alte Akademie 1085354 Freising-Weihenstephan, Germany. 

Contact the author

Keywords

Pinot noir grapes, wine, terroir, FTICR-MS, vintage, “Climats de Bourgogne” 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

Climatic potential to produce grapes for wine-making in the tropical north region of Minas Gerais State, Brazil

The tropical north region of Minas Gerais State is one of the least developed of Brazil and viticulture could be an alternative to develop its agriculture zone. The objective of this work was to evaluate the wine grape production climatic potential of that region.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.