Terroir 2014 banner
IVES 9 IVES Conference Series 9 From the “climats de Bourgogne” to the terroir in bottles

From the “climats de Bourgogne” to the terroir in bottles

Abstract

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs. On that basis, it could be assumed that, if grapes hold chemical fingerprints from a given terroir in their compositions, wines made of these grapes should also reflect related fingerprints. Very few strategies, based on the metabolodiversity of grape and/or wine, have tried to tackle the concept of Terroir in wine so far. Here, we report on the application of ultra-high resolution mass spectrometry, used as an untargeted approach, to the study of complex biochemical fingerprints of Pinot noir grapes and related wines from different plots (climats) in Burgundy, but grown/made by the same vinegrower/winemaker. Over three successive vintages, samples were mostly discriminated according to vintages. However within a given vintage, terroir-related signatures were more pronounced in grapes than in wines. In contrast, the single-run analysis of the same wines after bottle ageing clearly allowed for a significant separation between closely related vineyards from the Côte de Beaune and the Côte de Nuits, regardless of the vintages. For the first time, such results indicate that non-targeted experiments can reveal memories of environmental factors, which have impacted the wine’s metabolic baggage at the moment of its elaboration, through terroir-related metabolic signatures on a regional-scale that can potentially be as small as the countless “climats” of Burgundy. 

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

Chloé Roullier-Gall (1,2), Marianna Lucio (2), Laurence Noret (1), Philippe Schmitt-Koplin (2,3) and Régis D. Gougeon (1) 

(1) Institut Universitaire de la vigne et du vin, Jules Guyot, UMR A 02.102 PAM AgroSupDijon/Université de Bourgogne, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France. 
(2) Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85758 Neuherberg, Germany 
(3) Technische Universität München, Chair of Analytical Food Chemistry, Alte Akademie 1085354 Freising-Weihenstephan, Germany. 

Contact the author

Keywords

Pinot noir grapes, wine, terroir, FTICR-MS, vintage, “Climats de Bourgogne” 

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.

Climate change, regional adaptation necessities and impact on grape and wine composition – an integrated view on a moving target

Grapevines are cultivated on 6 out of 7 continents, roughly between latitudes 4° and 56° in the Northern Hemisphere and between 6° and 42° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates).

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.