terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

Abstract

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas. PIWI grapevines, resistant to fungal and oomycete diseases, host specific microbial communities, particularly on berry pruina, crucial for fermentation dynamics and wine aroma profiles [1,2,3].

The project employs chemical analysis, metagenomics, metabolomics, and culturomics to elucidate microbial metabolic pathways contributing to aromatic compound formation during fermentation with indigenous microorganisms [4]. Culturomics enables the isolation and characterization of cultivable microbes, enhancing knowledge of their metabolic potential. Additionally, the development of predictive biomarkers aims to optimize wine quality and fermentation processes, aligning with modern wine science trends emphasizing microbial contributions [1,2].

Preliminary findings from must and fermenting wine samples of conventional and PIWI grapevines (Chardonnay blanc – Resistant Chardonnay; Pinot noir – Prior; Riesling weiss – Sauvignon gris; Cabernet sauvignon – Cabernet carbon) reveal notable differences. Except for Pinot noir – Prior, PIWI varieties generally show a higher yeast load and greater diversity of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Hanseniaspora uvarum). This diversity correlates with enhanced fermentative vigor, highlighting PIWI’s potential for sustainable viticulture [1,2,3,5].

These findings suggest that PIWI grapevines can produce wines with unique sensory attributes shaped by their distinct microbial communities. The research underscores the role of microbial terroir in defining wine characteristics [1,2,3].

In conclusion, the METAPIWI project pioneers the study of microbial-grapevine interactions, particularly in fermentation and aroma production. By integrating advanced metagenomics and metabolomics, it contributes to sustainable winemaking and positions itself at the forefront of viticultural science.

References

[1] Bokulich, N., Collins, T., Masarweh, C., Allen, G., Heymann, H., … & Mills, D. (2016). Mbio, 7(3).

[2] Knight, S., Klaere, S., Fedrizzi, B., & Goddard, M. (2015). Scientific Reports, 5(1).

[3] Liu, D., Zhang, P., Chen, D., & Howell, K. (2019). Frontiers in Microbiology, 10.

[4] Pinu, F. (2018). Fermentation, 4(4), 92.

[5] González-Jiménez, M., Mauricio, J., Moreno-García, J., Puig-Pujol, A., & García‐Martínez, T. (2021). Applied Sciences, 11(24).

Publication date: June 5, 2025

Type: Oral communication

Authors

Mattia Cesana1, Nicola Mangieri1, Elisa Clagnan2, Alessio Altomare1, Marta Baviera1, Giulio Staffieri1, Diego Mora1, Pasquale Russo1, Daniela Fracassetti1, Giorgio Gargari1,*

1 Department of Food, Environmental, and Nutritional Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
2 Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, via Celoria 2, 20133 Milano, Italy

Contact the author*

Keywords

PIWI, fermentation, non-saccharomyces, sustainability

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.