terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

Abstract

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas. PIWI grapevines, resistant to fungal and oomycete diseases, host specific microbial communities, particularly on berry pruina, crucial for fermentation dynamics and wine aroma profiles [1,2,3].

The project employs chemical analysis, metagenomics, metabolomics, and culturomics to elucidate microbial metabolic pathways contributing to aromatic compound formation during fermentation with indigenous microorganisms [4]. Culturomics enables the isolation and characterization of cultivable microbes, enhancing knowledge of their metabolic potential. Additionally, the development of predictive biomarkers aims to optimize wine quality and fermentation processes, aligning with modern wine science trends emphasizing microbial contributions [1,2].

Preliminary findings from must and fermenting wine samples of conventional and PIWI grapevines (Chardonnay blanc – Resistant Chardonnay; Pinot noir – Prior; Riesling weiss – Sauvignon gris; Cabernet sauvignon – Cabernet carbon) reveal notable differences. Except for Pinot noir – Prior, PIWI varieties generally show a higher yeast load and greater diversity of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Hanseniaspora uvarum). This diversity correlates with enhanced fermentative vigor, highlighting PIWI’s potential for sustainable viticulture [1,2,3,5].

These findings suggest that PIWI grapevines can produce wines with unique sensory attributes shaped by their distinct microbial communities. The research underscores the role of microbial terroir in defining wine characteristics [1,2,3].

In conclusion, the METAPIWI project pioneers the study of microbial-grapevine interactions, particularly in fermentation and aroma production. By integrating advanced metagenomics and metabolomics, it contributes to sustainable winemaking and positions itself at the forefront of viticultural science.

References

[1] Bokulich, N., Collins, T., Masarweh, C., Allen, G., Heymann, H., … & Mills, D. (2016). Mbio, 7(3).

[2] Knight, S., Klaere, S., Fedrizzi, B., & Goddard, M. (2015). Scientific Reports, 5(1).

[3] Liu, D., Zhang, P., Chen, D., & Howell, K. (2019). Frontiers in Microbiology, 10.

[4] Pinu, F. (2018). Fermentation, 4(4), 92.

[5] González-Jiménez, M., Mauricio, J., Moreno-García, J., Puig-Pujol, A., & García‐Martínez, T. (2021). Applied Sciences, 11(24).

Publication date: June 5, 2025

Type: Oral communication

Authors

Mattia Cesana1, Nicola Mangieri1, Elisa Clagnan2, Alessio Altomare1, Marta Baviera1, Giulio Staffieri1, Diego Mora1, Pasquale Russo1, Daniela Fracassetti1, Giorgio Gargari1,*

1 Department of Food, Environmental, and Nutritional Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
2 Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, via Celoria 2, 20133 Milano, Italy

Contact the author*

Keywords

PIWI, fermentation, non-saccharomyces, sustainability

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.

Screening of Italian red wines for quercetin precipitation risk index

Quercetin (Q), a phenolic compound released from grape skins during red wine maceration, has been identified as a source of instability in bottled wines, particularly Sangiovese, due to crystallisation. This phenomenon represents an economic challenge for producers and affects wine clarity and consumer perception.

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.