terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Unveiling the secrets of catechin: insights from NMR spectroscopy

Unveiling the secrets of catechin: insights from NMR spectroscopy

Abstract

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1] Self-association of catechins, occurring through both transient and covalent mechanisms, plays a critical role in determining their stability, bioavailability, and biological activity.[2] [3] This ability to form supramolecular complexes may modulate their absorption and effectiveness, with important implications for optimizing catechin-rich foods and developing novel functional foods and nutraceuticals.

In this study, we present a quantitative analysis of the hydrogen-deuterium (H/D) exchange kinetics of the C6 and C8 hydrogens in (+)-catechin, monitored using ¹H NMR spectroscopy. While the presence of heavy water is not significant in natural systems, it serves as an instrumental tool to investigate the exchange mechanisms in this model system. At low concentrations, the exchange follows a two-step mechanism with pseudo-first-order rate constants (𝑘1, 𝑘2), showing a slight preference for deuterium incorporation at C6 over C8 at 298 K and pD 6.[4] Despite theoretical prediction, increasing (+)-catechin concentration accelerates the observed H/D exchange, suggesting a concentration-dependent mechanism. This effect is not attributed to pD changes but rather to (+)-catechin self-association. NMR chemical shift perturbations coupled with relaxation-based and diffusion NMR experiments reveal a monomer-dimer equilibrium, where dimerization alters the local environment of exchangeable protons, facilitating faster H/D exchange.

Based on these findings, we propose a comprehensive kinetic model that integrates both deuteration and self-association of (+)-catechin, aligning with the growing interest in H/D exchange at carbon centers in polyphenolic compounds.[5] Furthermore, complementary LC-MS data provide insights into how reversible self-association influences irreversible oligomerization, leading to changes in dimeric procyanidins profiles, in terms of conversion rate and stereochemical preference.

References

[1] Pietta, Pier-G. (2000). Journal of Natural Products, 63(7), 1035-1042.

[2] Martinez Pomier, K., Ahmed, R., Melacini, G. (2020). Molecules, 25(16).

[3] Botten, D., Fugallo, G., Fraternali, F., Molteni, C. (2015). The Journal of Physical Chemistry B, 119(40), 12860-12867.

[4] Bonaldo F., Mattivi F., Catorci D., Arapitsas P., Guella G. (2021) Molecules, 26(12).

[5] Fayaz, A.; Siskos, M. G.; Varras, P. C.; Choudhary, M. I.; Atia-tul-Wahab; Ioannis, G. P. (2020), PCCP 22 (30), 17401–17411.

Publication date: June 5, 2025

Type: Oral communication

Authors

Giacomo Zuccon1,3, Edoardo Longo1, Emanuele Boselli1,2, Alberto Ceccon3,*

1 Oenolab, Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2 ICOFF: International Competence Center for Food Fermentations, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
3 Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy

Contact the author*

Keywords

catechins, NMR, sparsely populated states, kinetic model

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effects of winemaking variables on the chemical and sensory quality of Schiava wines up to one year storage in bottle

The interactive effects of three major enological variables were evaluated on the quality of Schiava wine up to one year of storage in bottle.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].