terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Smoke exposure effects on red wines: how much is too much?

Smoke exposure effects on red wines: how much is too much?

Abstract

Increasing wildfire frequency in the United States has led to the indirect impact of smoke in vineyards, affecting grape quality and wine sensory attributes, commonly called “smoke taint”.1 During a smoke event, grapes absorb volatile phenolic compounds, which are subsequently glycosylated, leading to potential negative sensory impacts in the resulting wines.2 During the 2024 harvests, Vitis vinifera L. cv. Cabernet Sauvignon, Barbera, and Zinfandel grapes were intentionally exposed to various levels of smoke to establish threshold levels of free and bound volatile phenols in grapes that lead to noticeable changes in the sensory characteristics of their vinified wines. The wines were made using commercial practices at the UCD winery and stored until a complete sensory descriptive analysis (DA)3 and chemical analysis. All wines are analyzed for volatile phenols and their glycoconjugates concurrently using GC-MS/MS and LC-MS/MS, respectively.4,5 Previously, in 2023, a DA panel evaluated Cabernet Sauvignon grapes. Judges rated highly smoked exposed grape (HE) samples higher for “astringency” and “vicious” mouthfeel as well as “smoky,” “cooked meat,” and “rubber” aroma, which correlated with significantly elevated levels of all volatile phenols analyzed compared to other treatments. However, HE grape samples were rated lower for “fresh and fruity” aromas than all other treatments, indicating that smoke suppresses fruit aromas in grape samples. The low (LE) and medium (ME) exposed grapes were not able to be sensorial differentiated from the control grape samples, even though ME grape and wine samples were significantly higher in all volatile phenols. For the wines, the trained DA sensory panel evaluated aroma orthonsal and the five “smoke taint” retronasal, in addition to tastes and mouthfeels. ME wines showed higher levels of “smoky,” “meaty,” “cigar box,” “wood,” and “old ashtray” aromas than LE and CE wines, with HE wines most affected. Preliminary results indicate high smoke exposure causes distinct sensory differences in grapes and wines. Similarly to 2023 wines, the presented project investigates three 2024 vintage red varietal wines. It shows the possible sensory profiles in response to different smoke levels in an experimental system that exposes grapes to various smoke levels. The aim is to develop threshold levels in common wine varietals of free and bound volatile phenols that can lead to unfavorable sensory attributes in the final wines.

References

[1] Kennison, K.R.; Wilkinson, K. L.; Williams, H. G.; Smith, J. H.; Gibberd, M. R. Smoke-Derived Taint in Wine: Effect of Postharvest Smoke Exposure of Grapes on the Chemical Composition and Sensory Characteristics of Wine. J Agric Food Chem 2007, 55 (26), 10897–10901. https://doi.org/10.1021/jf072509k.

[2] Parker, M.; Osidacz, P.; Baldock, G. A.; Hayasaka, Y.; Black, C. A.; Pardon, K. H.; Jeffery, D. W.; Geue, J. P.; Herderich, M. J.; Francis, I. L. Contribution of Several Volatile Phenols and Their Glycoconjugates to Smoke-Related Sensory Properties of Red Wine. J Agric Food Chem 2012, 60 (10), 2629–2637. https://doi.org/10.1021/jf2040548.

[3] Lawless, H.; Heymann, H. Sensory evaluation of food: Principles and practices; Springer New York: New York, NY, 1998;

[4] Noestheden, M.; Thiessen, K.; Dennis, E. G.; Tiet, B.; Zandberg, W. F. Quantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis Vinifera Berries. J Agric Food Chem 2017, 65 (38), 8418–8425. https://doi.org/10.1021/acs.jafc.7b03225.

[5] Caffrey, A.; Lerno, L.; Rumbaugh, A.; Girardello, R.; Zweigenbaum, J.; Oberholster, A.; Ebeler, S. E. Changes in Smoke-Taint Volatile-Phenol Glycosides in Wildfire Smoke-Exposed Cabernet Sauvignon Grapes throughout Winemaking. Am J Enol Vitic 2019, 70 (4), 373–381. https://doi.org/10.5344/ajev.2019.19001.

Publication date: June 5, 2025

Type: Oral communication

Authors

Annegret Cantu1,*, Francesco Maioli1, Bainian Chen1, Chen Liang1, Ron Runnebaum1, Hildegarde Heymann1, Arran Rumbaugh2

1 Department of Viticulture & Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
2 United States Department of Agriculture, Agriculture Research Service, Department of Viticulture and Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA

Contact the author*

Keywords

red wine, smoke exposure, volatile phenol threshold levels, descriptive analysis

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].